SOIL-INORGANIC NITROGEN CHANGES IN RICE FIELDS UNDER SELECTED CROP MANAGEMENT INTERVENTIONS AND HYDROLOGICAL CONDITIONS IN KILOMBERO FLOODPLAIN, TANZANIA

AUSTIANO BERNARD YOBELE

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT OF NATURAL RESOURCES FOR SUSTAINABLE AGRICULTURE OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA.
ABSTRACT

A study was conducted at Ifakara Morogoro Region with a purpose of investigating the effect of selected crop management interventions and hydrological conditions on soil NH_4^+ and NO_3^- content. Study sites were located at Valley Middle and Fringe sites as distinct hydrological zones. An experiment, in a complete Randomized block design, with six treatments: Semi-natural vegetation (TR1), Farmers practice (TR2), bunding alone (TR3), bunding + 60 kgN/ha (TR4), bunding + 120 kgN/ha (TR5) and bunding+Lablab green manure (TR6) was laid down in three replicates. SARO 5 rice variety was used as a test-crop. The trials were set during the 2014/15 pre-season and 2015/16 main season. Data was collected from 0-10cm soil depth. A Two-way ANOVA and post hoc – Tukey HD test statistical analyses were performed using GenStat Programme. Pre-season NH_4^+ showed 3 patterns: initial increase to peak values within 3 and 6 weeks for the Fringe and Middle sites, a period of decline (7th to 9th week, Middle, and 4th to 6th Fringe) and a period of increase (from 7th, Fringe and 10th week, Middle). Highest peak NH_4^+ values were at the Middle site (TR6 - 0.007401, TR5 - 0.004776, and TR4 - 0.04525, g/kg soil and TR4 - 0.004524, TR5 - 0.004595 g/kg soil). Peak NH_4^+ values differed significantly among treatments, following the trend: TR6>TR5>TR3>TR4>TR1>TR2 and TR4>R6=TR5=TR3+TR2>TR1 at the Middle and Fringe sites, respectively. Nitrate content decreased within 1-2 weeks both sites to attain the least values between 4 and 7 weeks and rose steadily to 10. Rice cropping season NH_4^+ and NO_3^- variation showed a similar trend for both sites, apart for a sudden increase in the treatments with N input at week 8 and 10. Hydrological conditions did not significantly influence the NH_4^+ and NO_3^- (P = 0.05) content. The study recommends repeating the work under controlled conditions.
DECLARATION

I, Austiano Bernard Yobele, do hereby declare to the Senate of Sokoine University of Agriculture that this dissertation is my own original work done within the period of registration and that it has neither been submitted nor being concurrently submitted to any other institution.

____________________ _______________________
Austiano Bernard Yobele Date
(MSc. Candidate)

The above declaration is confirmed by;

____________________ _______________________
Prof. M. Kilasara Date
(Supervisor)
COPYRIGHT

No part of this dissertation may be reproduced, stored in any retrieval system, or transmitted in any form or by any means without prior written permission of the author or Sokoine University of Agriculture in that behalf.
ACKNOWLEDGMENTS

I wish to thank the almighty GOD for his protection and direction during the whole period of this study.

I would like express my sincere thanks to the East Africa wetland project for supporting this research under the country coordinator Prof. S. Misana of University of Dar es Salaam.

I would like also to express my whole-hearted appreciation to Professor M. Kilasara of the Department of Soil and Geological Sciences of the Sokoine University of Agriculture who was my Research Supervisor. His patient support, advice and scientific guidance made the completion of this study possible.

Special gratitude is also extended to Miss. K.X Wegner, Messrs J. Kwesiga and G. Bjon of Bonn University, Mr. E. Chilagane of Uyole Agriculture Research Institute, L. Chilagane and D Chilagane of Sokoine University of Agriculture and Messrs A. Maganga, and Msafiri of Ifakara District for their cooperation and assistance during my field activities. I would like to extend my profound acknowledgments to all members of academic staffs in the Department of Soil and Geological Sciences, and in the College of Forestry and Nature Conservation, SUA for their guidance, advice and encouragement. Their contributions made this study successful. The encouragements and support I got from the postgraduate students in the College of Forestry and Nature Conservation was very helpful to me. I profoundly acknowledge their support.
I would like to extend my sincere appreciations to my Father Mr Bernard Yobele Njelwa and Mother Tabia Aron Ngole for their prayers and support. I would also like to express my gratitude to my friends Jamila Alex, Nyemo Chilagane, Solomon Sembos and Davis Chidodo for their courage and prayers that made this study possible. May God bless you.
DEDICATION

This work is dedicated to my Parents, Family and Friends whose constant encouragement and wishes gave me hope inspiration and strength to pursue this study. May GOD shower merciful rain and blessing to You.
TABLE OF CONTENTS

ABSTRACT ... ii
DECLARATION .. iii
COPYRIGHT .. iv
ACKNOWLEDGMENTS ... v
DEDICATION .. vii
TABLE OF CONTENTS ... viii
LIST OF TABLES ... xii
LIST OF FIGURES .. xiv
PLATE .. xv
LIST OF ABBREVIATIONS AND SYMBOLS .. xvi
CHAPTER ONE .. 1
1.0 INTRODUCTION .. 1
1.1 Background Information ... 1
1.2 Problem Statement and Justification ... 3
1.3 Objectives of the Study ... 5
 1.3.1 Overall objective .. 5
 1.3.2 Specific objectives .. 6
1.4 Null Hypothesis ... 6
CHAPTER TWO .. 7
2.0 LITERATURE REVIEW ... 7
2.1 Wetland Soils and Hydrological Conditions ... 7
2.2 Forms of Nitrogen in Wetland Soils ... 7
2.3 Source of Nitrogen in Wetland Soils .. 8
2.4 Nitrogen Dynamics in Wetland Soils ...9
 2.4.1 Mineralization ...9
 2.4.2 Nitrification and denitrification ...11
 2.4.3 Ammonia volatilization ...13
 2.4.4 Leaching ...15
2.5 Green Manure and other Organic Sources of N in rice ecosystem15
2.6 Effect of Soil Moisture on Nitrogen Status in Wetlands16

CHAPTER THREE ..18
3.0 MATERIALS AND METHODS ...18
3.1 Location and Characteristics of the Study Sites ...18
 3.1.1 Location of the study sites ...18
 3.1.2 Site description of the study sites ...18
 3.1.3 Rainfall of the studied research sites ...20
3.2 Field Experiment and Data Collection ...21
 3.2.1 Experimental design ..21
 3.2.2 Data collection ..22
 3.2.2.1 Determination of hydrological-based characteristics22
 3.2.2.1.1 Rainfall of the studied sites ..22
 3.2.2.1.2 Soil moisture measurements ...22
 3.2.2.1.3 Redox potential measurement ..22
 3.2.2.2 Determination of the soil characteristics ...22
 3.2.2.3 Soil NH₄⁺ and NO₃⁻ content data collection23
 3.2.2.3.1 Soil sampling and sample preparation23
3.3 Data Analysis ..23
 3.3.1 Soil characterization ..23
 3.3.2 Determination of NH₄⁺ and NO₃⁻ ..24
3.4 Statistical Analysis ..25

CHAPTER FOUR ..26

4.0 RESULTS ...26

4.1 Characteristics of the Studied Soils ...26

4.2 Variation of Soil Moisture in the Root Zone of the Studied Soils During
the Pre-paddy Growing Season ..27

4.3 Variation of the Redox Potential in the Root Zone of the Studied Soils28

4.3.1 Variation of redox potential at the Middle and Fringe site during the
pre-paddy cropping season ...28

4.3.2 Variation of redox potential at the Middle and Fringe sites during the
paddy cropping season ..29

4.4 Effect of Crop Management Interventions on the Variation of NH$_4^+$ Content30

4.4.1 NH$_4^+$ variability during the pre-paddy growing season ...30

4.4.1.1 NH$_4^+$ content at the Middle site ...30

4.4.1.2 NH$_4^+$ content at the Fringe site ..32

4.4.2 NH$_4^+$ variability during the paddy cropping season ..35

4.4.2.1 Content of NH$_4^+$ in valley Middle ...35

4.4.2.2 Content of NH$_4^+$ in valley Fringe zone ...37

4.5 Effect of Crop Management Interventions on the Variation of NO$_3^-$ Content38

4.5.1 NO$_3^-$ content during the pre-rice cropping period ..39

4.5.1.1 NO$_3^-$ content at the Middle site ...39

4.5.1.2 NO$_3^-$ content at the Fringe site ..40

4.5.2 NO$_3^-$ content during the paddy cropping season ...42

4.5.2.1 NO$_3^-$ content at Middle zone ...42

4.5.2.2 NO$_3^-$ content at the Fringe site ..43
4.6 Effect of Hydrological Conditions on the NH$_4^+$ and NO$_3^-$ Variation During the Paddy Growing Season..45

4.6.1 Effect of hydrological conditions on the content of NH$_4^+$..........................45

4.6.2 Effect of hydrological zone on the root zone NO$_3^-$ content......................47

CHAPTER FIVE ...48

5.0 DISCUSSION..48

5.1 Effect of Crop Management Interventions on the Variation of NH$_4^+$ Content48

5.1.1 Variation of NH$_4^+$ during the pre-rice growing season (Dry-wet transition period) at both sites; Middle and Fringe site48

5.1.2 NH$_4^+$ variability during the paddy cropping season at both sites;

Middle and Fringe site ...51

5.2 Effects of Crop Management Interventions on the Variation of NO$_3^-$ Content.....54

5.2.1 NO$_3^-$ variability during the pre-rice cropping season at both sites;

Middle and Fringe site ...55

5.2.2 NO$_3^-$ variability during the paddy growing period at both sites;

Middle and Fringe site ...56

5.3 Contribution of Hydrological Conditions on the NH$_4^+$ and NO$_3^-$ Variation........57

CHAPTER SIX ..59

6.0 CONCLUSIONS AND RECOMMENDATIONS...59

6.1 Conclusions ...59

6.2 Recommendations ..60

REFERENCES...61
LIST OF TABLES

Table 1: Soils physical characteristics of the studied sites ..26
Table 2: Soils chemical characteristics of the studied sites ..26
Table 3: Variation of soil moisture content in the root zone (0-10cm) in the studied soils during the pre-paddy growing season ...28
Table 4: Water filled pore space at the Middle and Fringe sites during the pre-paddy growing season ...28
Table 5: Variation of Redox potential (eh) at the Middle and Fringe sites during the pre-paddy cropping season ..29
Table 6: Variation of redox potential at the Middle and Fringe site during the paddy-cropping season ...30
Table 7: Effect of crop management interventions on the NH₄⁺ content during the pre-paddy growing season at the Middle site ...32
Table 8: Effect of crop management interventions on the NH₄⁺ content at selected periods during the pre-paddy growing season at the Fringe site34
Table 9: Effect of crop management interventions on the NH₄⁺ content during the paddy-cropping season at the Middle site ...36
Table 10: Effect of crop management interventions on the NH₄⁺ content during the paddy-cropping season at the Fringe site ...38
Table 11: Effect of crop management interventions on the NO₃⁻ content during the pre-paddy growing season at the Middle site ...40
Table 12: Effect of crop management interventions on the NO₃⁻ content during the pre-paddy growing season at the Fringe site ...41
Table 13: Effect of crop management interventions on the NO₃⁻ content during the rice-cropping season at the Middle site ...43
Table 14: Effect of crop management interventions on the NO$_3^-$ content during the rice paddy-cropping season at the Fringe site ...44

Table 15: Two-way ANOVA for NH$_4^+$ content comparison between the Middle and Fringe sites at week 0. ...45

Table 16: Two-way ANOVA for NH$_4^+$ content comparison between the Middle and Fringe sites at week 6. ...46

Table 17: Two-way ANOVA for NO$_3^-$ content comparison between the Middle and Fringe sites at week 0 ...47
LIST OF FIGURES

Figure 1: Location map of the experimental sites. ..20
Figure 2: The rainfall during the 2015/16 rainy season ..20
Figure 3: Pre-rice growing season NH\textsubscript{4}+ variation at the Middle site31
Figure 4: NH\textsubscript{4}+ content during the pre-paddy growing season at the Fringe site33
Figure 5: NH\textsubscript{4}+ content during the paddy-cropping season at the Middle site35
Figure 6: NH\textsubscript{4}+ content during the paddy-cropping season at the Fringe site37
Figure 7: NO\textsubscript{3}- content during the pre-paddy growing season at the Middle site39
Figure 8: NO\textsubscript{3}- content during the pre-paddy growing season at the Fringe site41
Figure 9: NO\textsubscript{3}- content the rice paddy-cropping season at the Middle site42
Figure 10: NO\textsubscript{3}- content the rice paddy-cropping season at the Fringe site44
Figure 11: NH\textsubscript{4}+ content in the different treatments at the Middle and Fringe sites during the paddy-growing season ...46
Figure 12: NO\textsubscript{3}- content in the different treatments at the Middle and Fringe sites during the paddy-growing season ...47
Plate 1: Fringe experimental site four weeks after paddy rice transplantation............21
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Bulk Density</td>
</tr>
<tr>
<td>C: N</td>
<td>Carbon-to-Nitrogen ratio</td>
</tr>
<tr>
<td>CRBD</td>
<td>Completely Randomized Block Design</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>eh</td>
<td>Redox Potential</td>
</tr>
<tr>
<td>FRAM</td>
<td>Ferroelectric Non-volatile Random Access Memory</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MNRT</td>
<td>Ministry of Natural Resources in Tanzania</td>
</tr>
<tr>
<td>Mv</td>
<td>Mil volts</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Nitrate</td>
</tr>
<tr>
<td>NTCHS</td>
<td>National Technical Committee for Hydric Soils</td>
</tr>
<tr>
<td>OD</td>
<td>Oven dried</td>
</tr>
<tr>
<td>PD</td>
<td>Particle Density</td>
</tr>
<tr>
<td>r.p.m</td>
<td>Revolutionary per minute</td>
</tr>
<tr>
<td>TR</td>
<td>Treatment</td>
</tr>
<tr>
<td>WFP</td>
<td>Water Filled Pore</td>
</tr>
<tr>
<td>WHC</td>
<td>Water-Holding Capacity</td>
</tr>
<tr>
<td>WKAP</td>
<td>Weeks After Transplanting Rice</td>
</tr>
<tr>
<td>WKT</td>
<td>Weeks before Transplanting Rice</td>
</tr>
</tbody>
</table>
CHAPTER ONE

1.0 INTRODUCTION

1.1 Background Information

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt including areas of marine water, the depth of which at low tide does not exceed 6 meters (Ramsar, 1971). Wetlands consist primarily of hydric soils, which support ecosystem services (Bedford, 1996; MAHSC, 2004). The characteristics of wetland soils differ considerably with changes in hydrological conditions (Keeney and Sahrawat, 1986; Reddy and DeLaune, 2008). There are three distinct hydrological conditions (Keeney and Sahrawat, 1986; Reddy and DeLaune, 2008). These are: i) Center zone that, has a flooded soil and a water table that ranges from 50-70mm above the surface. ii) Middle zone that, contains saturated soils, but without excess floodwater (thickness of about few mm to 10mm blow the soil surface), and iii) Fringe zone that, has water table beneath the surface. Soils that occur in zones (i) and (ii) above are known as hydric soils while those in (iii) are considered as upland soils (Reddy and DeLaune, 2008).

The global wetland area is estimated to be around 7 to 9 million km\(^2\) covering about 4 – 6% of the Earth’s surface (Inglett et al., 2005; Mitsch and Gosselink, 2007). Wetlands are among the world's most biologically productive ecosystems and are rich in ecological species diversity (Munishi and Kilungu, 2004). Wetlands support the livelihood for more than three billion of people in the world and millions of people in Africa (Mitsch and Gosselink, 2007). In East Africa, wetlands cover about 4% of total land (Gichuki and Macharia, 2006) while in Tanzania about 10% of the terrestrial land is occupied with wetlands (Mombo et al., 2011). They include large lake systems, river floodplains, and
deltaic mangroves (Kamukara, 1990). Tanzania is endowed with potential wetlands that support the livelihood of a large community (Mombo et al., 2011). In view of the importance of wetland and evidence of their degradation (Kamukala, 1990), Tanzania ratified the Ramsar Conversion that hinges on wetland wise use concept with a purpose of ensuring wetlands sustainability (MNRT, 2004a). Accordingly, Tanzania designated four wetlands as Ramsar sites: Rufiji-Mafia Kilwa, Lake Natron basin, Malagarasi-Muyovozi and Kilombero flood plain (Ramsar, 2008). That notwithstanding, the sustainability of these and other wetlands in Tanzania is threatened by numerous socio-economic activities, particularly agriculture, that are taking place in these and other wetlands (Munishi et al., 2003; Madoffe and Munishi, 2005; Kashaigili, 2006; Chuwa, 2010; Kalisa et al., 2013).

Kilombero Flood plain is the fourth designated wetland of international importance under the Ramsar Treaty on Wetlands in Tanzania (Byers et al., 2012). The valley is of great economic, ecological and biological significance (Mombo et al., 2011). The major economic activities in the valley include fishing, pastoralism and agriculture (Mombo et al., 2011). Intensive agricultural production is the leading economic activity with sugar cane and paddy being the most important crops (Issa, 2004; Kato, 2007). In recent years, there has been an influx of investors who are interested to carry out large-scale farming in the floodplain (MNRT, 2004b).

One of the commonest inputs in agriculture is mineral N fertilizer (Cassman et al., 1998; Kimetu et al., 2006; Mgonzo, 2012). Mineral N is a requirement for the vegetative species in wetlands but if used inappropriately, it can lead to poisoning of some wetland species and a source of greenhouse gas emission (Wall, 2013; Audet et al., 2014). Wetlands, nevertheless, respond differently to the application of mineral N fertilizer depending on
the existing local conditions; in particular the type of soil, vegetation, water flow rates and amount of applied fertilizer (Schmied, 2001; Reddy and De Laune, 2008; Smith, 2010).

1.2 Problem Statement and Justification

Rice is a commercial crop with an increasing productivity in the Kilombero valley (Kato, 2007). Mineral nitrogen fertilizer is becoming an essential input for the production of the crop, notably in irrigated systems (Nascente et al., 2009). Mineral N in the soil is very dynamic (Becker et al., 2007; Reddy and De Laune, 2008). The processes that determine the dynamic nature of mineral N depend on a number of soil conditions, the most important ones being the soil hydrological conditions (Reddy and De Laune, 2008), soil pH (Vitosh and Johnson, 1995; Brady and Weil, 1999), N input (Reddy and De Laune, 2008; Yeasmin et al., 2012) and crop husbandry (Lou et al., 2011). Both the type of N and the level of application determine its usefulness for crop production under wetland conditions (Ngwene et al., 2013).

In wetland soils, it is common to overcome mineral N deficiency by increasing the organic or inorganic soil mineral N pool (endogenous and exogenous N sources) thus contributing to increase yields (Yeasmin et al., 2012). Most plants take up nitrogen in the form of NO$_3^-$ (Buresh et al., 2008). Rice is exceptional to other plants by having the ability to take up N in the NH$_4^+$ form (Wang et al., 1993). In addition, both NH$_4^+$ and NO$_3^-$ are very dynamic depending on the wetland hydrology in particular presence of free water and redox potential (Pezeshki and Delaune, 2012). As a result, the status of both NH$_4^+$ and NO$_3^-$ in wetlands and the dynamics of the two are of great importance for N management and for paddy production (Buresh et al., 2008). Depending on existing conditions, in paddy rice production systems, N can be lost via number pathways that are associated with leaching (Kimetu et al., 2006), volatilization (Loomis and Connor, 1992; Jones et al.,
2007), denitrification (Brady and Weil, 1999) and nitrification (Sahrawat, 2010). Apart from causing net N loss, these pathways are responsible for causing negative environmental effects and climate change (Reddy and DeLaune, 2008). For instance, NH$_4^+$ N is known to be toxic to aquatic life even at low concentration in water (Reddy and DeLaune, 2010; Wall, 2013). On the other hand, NH$_4^+$ volatilization increase the risk of climate change effects (Audet et al., 2014). NH$_4^+$, a production of mineralization, is easily oxidized to NO$_3^-$ under aerobic conditions. The latter moves from the oxidized zone downward into the anaerobic zone where it is reduced to NO$_2^-$ and eventually to N$_2$O and N$_2$ (Smil, 2000).

The two have direct contribution to global warming as they do adversely affect the ozone layer (Audet et al., 2014). Likewise, NO$_3^-$ N increases the risk of ground water pollution when leached from flooded soils (Yeasmin et al., 2012). For economic reasons, environmental upkeep for the well-being of wetland biodiversity and minimization of the contribution of the added N fertilizers to greenhouse gas emission, it is necessary to monitor the inorganic N status in wetland rice production. A number of factors influence the dynamics of mineral or inorganic N dynamics in wetlands. These include temperature (Schmied, 2001; Wang et al., 2004), redox potential (Pezeshki and Delaune, 2012), moisture regime (Wang et al., 2004; Reddy and DeLaune, 2008), pH (Corstanje and Reddy, 2004), C:N ratio (Smith, 2010), microbial activity and microbial biomass, (Reddy and DeLaune, 2008) availability of electron acceptors (Sahrawat and Narteh, 2001, 2002, 2003; Sahrawat, 2004), cation exchange capacity (Cassman et al., 1998), amount and nature of clay (Sugihara et al., 2010a), nature and amount of salts (Bu et al., 2015), inputs and nature of organic materials (Sugihara, 2010; Sugihara et al., 2010a, b). The demand of N by paddy varies with crop growth or development (Muhammad et al., 2010). Knowledge about the quantity of mineral N needed at each stage is necessary in order to reduce N losses and increase the N use efficiency. Due to the variation of the factors that influence mineral N dynamics in wetlands, it is imperative to understand is behavior during the cropping
season in order to develop basis for appropriate N. This calls for the need to evaluate the effect of mineral N application rate and management interventions in terms of their contribution to labile N in the root zone. Fertilization and other anthropogenic factors in combination with mineralization processes make it hard for farmers to optimize the mineral N supply to the crops and lessen the mineral N pool which results in increased mineral N loss. When the concentration of NH$_4^+$ and NO$_3^-$ is unknown, the available blanket fertilizer recommendations for rice farmers may lead to too low or too high concentration of available mineral N, the latter increases the risk for pollution.

It is important to know how much mineral N is present throughout the growing season under selected farming practices that are common to small-scale farmers in floodplains, notably in Kilombero valley, and currently, no studies has been conducted pertaining the mineral N dynamics in wetlands soil with due respect on hydrological condition. Studies Geoge et al. (1993); Cassman et al. (1998); Corstanje and Reddy (2004) do indicate that the soil drying that follows inundation during paddy production increases mineral N in the soil. The level of this nutrient is variable hence, its consequences to both water quality and greenhouse gas emission of the following flooding period (Yeasmin et al., 2012). It is important to establish the content of mineral N prior to the onset of the rain season or at the beginning of the following rice crop in wetland. A thorough knowledge of the issues raised above would enable economic and sustainable rice production in the Kilombero flood plain where information hitherto is scanty.

1.3 Objectives of the Study

1.3.1 Overall objective

To investigate the effect of selected crop management interventions and soil hydrological conditions on the variation of soil NH$_4^+$ and NO$_3^-$ content during 2015/16 rainy season.
1.3.2 Specific objectives

The specific objectives of the study were:

i. To assess the effects of selected crop management interventions on the variation of NH$_4^+$ and NO$_3^-$ content during pre and after transplanting rice.

ii. To find out the effect of hydrological conditions on NH$_4^+$ and NO$_3^-$ status under paddy growing season.

1.4 Null Hypothesis

i. There is no difference in soil NH$_4^+$ and NO$_3^-$ content due to imposed crop management during the rice production season.

ii. The soil NH$_4^+$ and NO$_3^-$ content does not vary with hydrological conditions irrespective of the imposed crop management and time since transplantation.
CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Wetland Soils and Hydrological Conditions

Wetlands consist primarily of hydric soils, which support ecosystem services (Bedford, 1996; MAHSC, 2004). The characteristics of wetland soils differ considerably with changes in hydrological conditions (Keeney and Sahrawat, 1986; Reddy and DeLaune, 2008). There are three distinct hydrological conditions (Keeney and Sahrawat, 1986; Reddy and DeLaune, 2008). These are: i) Center zone that, has a flooded soil and a water table that ranges from 50-70mm above the surface. ii) Middle zone that, contains saturated soils, but without excess floodwater (thickness of about few mm to 10mm blow the soil surface), and iii) Fringe zone that, has water table beneath the surface. Soils that occur in zones (i) and (ii) above are known as hydric soils while those in (iii) are considered as upland soils (Reddy and DeLaune, 2008).

Hydric soils are defined as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Hydric soils are associated with reducing conditions. According to Inglett et al. (2005), they are characterized by a redox potential of < +300 mV. Most of the processes that occur in wetland soils are conditioned by redox potential. These include the processes that determine the N status in the wetland such as nitrification, denitrification and ammonia diffusion (Reddy and DeLaune, 2008).

2.2 Forms of Nitrogen in Wetland Soils

There are two major sources of N in the soil, namely organic and inorganic N sources. Organic forms of N are present in compounds such as amino acids, proteins, and more resistant N compounds (Reddy and DeLaune, 2008). In bio-solids, the majority of N
added to the soil is in organic form (Reddy and DeLaune, 2008). Simple organic compounds are easily degraded by microorganisms to form amino acids and eventually mineral N (Buresh et al., 2008). However, the organic compounds that contain N within the soil and their associated ecosystem are extensively different. Inorganic forms include NH$_3$, NH$_4^+$, NO$_3^-$ and NO$_2^-$ (Reddy and DeLaune, 2008). NH$_4^+$ and NO$_3^-$ are readily available to plants and microorganisms (Muhammad et al., 2010). NH$_4^+$ is the stable form of mineral N, which accumulates in the soil under reduced conditions (Buresh et al., 2008).

NH$_4^+$ is oxidized to NO$_3^-$ under aerobic conditions (Kimetu et al., 2006; Reddy and DeLaune, 2008). Accumulated NO$_3^-$ can be rapidly lost by denitrification up on flooding or paddling (Buresh and De data, 1991; Sigh et al., 1999) or through water saturation by heavy rains even before dry-sown rice takes place (Sharma et al., 2005). This happens when the percentage water filled pore space (WFP) exceed 60% (Linn and Doran, 1984). From the respiration point of view, this correspond to redox potential of < + 300mV (Inglet et al., 2005; Pezeshki and DeLaune, 2012). The NO$_3^-$ that forms at the aerated zone migrates quickly into deeper anaerobic zone where denitrifying microorganisms convert it into gasous N, in particular N$_2$O (Smil, 2000; Aulakh et al., 2001; Cai et al., 2001).

2.3 Source of Nitrogen in Wetland Soils

Organically bound mineral N exists in wetland soils including seasonally added sediments (Reddy et al., 2010). In cultivated wetlands, organic based N can be added as farmyard manure, green manure, compost, crop residues, and azolla (Patnaik and Rao, 1979; Issa, 2004). These furnish wetland soils with mineral N upon decomposition. The relative rate and turnover time of mineral N depends on the quantity and quality of the substrate (Kalumuna, 2005; Kimetu et al., 2006; Lou et al., 2011). Similarly, mineral N content in
compost manure varies depending on the chemical composition of the material and quality of preparation (Issa, 2004). Inorganic or mineral N sources in wetland soils include industrial fertilizers and atmospheric mineral N deposition (Brady and Weil, 1999). In paddy production, a commonly used industrial fertilizer includes UREA, CAN and NPK (Mgonzo, 2012).

2.4 Nitrogen Dynamics in Wetland Soils

In wetland soils, N is bound to undergo a number of processes depending on the environmental conditions. These include mineralization of organic N into mineral N (NH$_4^+$ - N), ammonia volatilization, nitrification, denitrification and losses of N from site through leaching, runoff and seepage (Reddy and DeLaune, 2008; Yeasmin et al., 2012). NO$_3^-$ is the dominant form of inorganic mineral N in drained aerated soils while NH$_4^+$ is the dominant and stable forms of inorganic N that accumulates in submerged or reduced soils (Buresh et al., 2008).

2.4.1 Mineralization

Mineral N mineralization is referred to the decomposition or oxidation of the chemical compounds inorganic matter into plant-accessible forms (Robert, 2005). It is one of the significant factors for plant nutrition and soil fertility, also it has been approximated to about 95% of the total mineral N in most surface soils are organically combined (Abdelmagid, 1980). In wetland soils, there are various environmental factors affecting mineral N mineralization, these are temperature (Powers, 1980), moisture regime (Palm et al., 1989), C:N ratio (Smith, 2010), redox potential (Pezeshki and DeLaune, 2012), microbial activity and microbial biomass (Sugihara, 2010; Sugihara et al., 2010a, b), availability of electron acceptors (Sahrawat and Narteh, 2001, 2002, 2003; Sahrawat, 2004), amount and nature of clay (Sugihara et al., 2010a), nature and amount of salts, soil
organic matter content and quality (Bu et al., 2015) and the supply of nutrients such as phosphorus (P) are among the important determinants of ammonium production in submerged rice soils (Inamura et al., 2009). These factors differ from flooded conditions to non-flooded conditions hence influencing the mineral N mineralization. Even in the same type of soils in wetland soils, mineral N mineralization may also be influenced by different type and cultural practices as well as vegetation to a particular zone (Vitousek et al., 1982). Among the factors, temperature and moisture are reported to be more influential to mineral N mineralization (Wang et al., 2004). Ponnamperuma (1972) reported that the increase of temperature even up 50°C contributed to the increase of mineral N mineralization in soils under flooded condition. The amount of mineral N mineralized between 25 and 30°C was larger than 20 and 25°C (Ando et al., 1992). The mineralization rate at the wet soils is different from the soil at a transition from wet to dry, and eventually to the dry soil (Ando et al., 1992).

Mineralization of organically bound N leads to the formation of ammonium (Kundu and Ladha, 1997; Gao et al., 2016). Under anaerobic conditions, the only main end-product of mineralization is NH$_4^+$- N (Ready and Delaune, 2008; Gao et al., 2016). Mineralization under reduced soil conditions is characteristically lower because of the low metabolic requirements of anaerobic microorganism (Zaman et al., 1999; Sahrawat, 2010). This is associated with a slower breakdown of organic matter and plant residues (Villegas-Pagga et al., 2000). Hence lower gross N mineralization compared with when it occurs under aerobic soil conditions (Sahrawat, 2010). Anaerobic soil conditions therefore are associated with lower mineralization and lower immobilization (Wang et al., 2001) leading to higher rates of inorganic release compared to aerobic soil conditions (Tusuneem and Patrick, 1971). The rate of mineralization by the anaerobic micro-organism is low (Buresh et al., 2008). This leads to higher net N mineralization in submerged (reduced soil
condition) compared with oxidized soil conditions (Tusneem and Patrick, 1971). However, Wang et al. (2001) while studying inorganic mineral N release from 20 different soils found that net mineral N mineralization was not always higher under submerged conditions. The net buildup of inorganic mineral N in submerged (reduced) soils is reportedly higher in presence than absence of rice plants (Glosh and Kashyap, 2003). This phenomenon involves more processes than merely a reduction of mineral N (Kundu and Ladha, 1997). Prolonged soil submergence or anaerobic conditions can promote a buildup of less-decomposed substances of the soil organic matter with relatively high phenolic content, humic acid and calcium humate content (Olk et al., 1996). Their content represents about 20-25% of the total soil organic matter in intensively cultivated tropical rice soils (Bao et al., 2004). These constituencies have the potential to abiotically immobilize hence reducing the rate of nitrogen N mineralization (Olk et al., 1996). Abiotically fixed mineral N is believed to contribute to the indigenous mineral N supply and could therefore explain the lack of decline in rice crop yield in long-term continuous cropping plots receiving 0 N supply in an experiment conducted in the Philippines (Padilla, 2001).

Due to the low mineral N requirements for anaerobic metabolism, the net release of inorganic mineral N from decomposing plants residues would be expected to occur at a higher C: N ratio in submerged rather than aerobic soil (Buresh et al., 2008).

2.4.2 Nitrification and denitrification

Nitrification and denitrification are two processes that are interlinked (Reddy and DeLaune, 2008). Both processes depend heavily on the oxygen (O₂) status of the floodwater. On the other hand, nitrification as the process of oxidizing NH₄⁺- N to NO₃⁻ demands availability of free oxygen (Abdelmagid, 1980; Patrick and Reddy, 1986;
Sahrawat, 2010). The level of O$_2$ in the flood water depends on the photosynthetic O$_2$ production by algae and possibly higher plants, density or activity of O$_2$ consuming microorganisms, and extent of mixing of water by wind or convention currents (Vitosh and Johnson, 1995). Availability of O$_2$ in surface flooded soils is affected by the net O$_2$ consumption rate and its renewable rate from the floodwater. Two zones, an aerobic surface and anaerobic subsurface zones exist in flooded soils (Broodbent, 1978).

There are number of factors that affect the thickness of the aerobic zone. These include; the concentration of oxygen, content of easily decomposable fraction of the soil organic matter, degree of microbial activity, content of iron (Fe$_2^+$), manganese (Mn$_2^+$), sulfur (S$_2^-$) and NH$_4^+$ (Patrick and Reddy, 1986). Diffusion of Fe$_2^+$ (Reddy and Patrick, 1980), Mn$_2^+$ and S$_2^-$ from lower anaerobic zone diminishes the thickness of the aerobic layer while increase in the concentration of NH$_4^+$ led to its increase (Reddy and Patrick, 1984). Increase in the aerobic surface layer with increase in NH$_4^+$ concentration has been partly attributed to the accumulation of NO$_3^-$ in the surface layer resulting from nitrification of NH$_4^+$ (Reddy and DeLaune, 2008).

Denitrification takes place deeper in the anaerobic subsurface zone under O$_2$ free conditions (Babbar and Zak, 1996). This is accomplished by some microorganisms (bacteria belonging to the genera Pseudomonas, Bacillus, Micrococcus, Thiobacillus, Xanthomonas, and Spirillum) that are capable of converting carbohydrate substrate to CO$_2$ and H$_2$O using nitrate as an electron receptor instead of O$_2$ (Vitosh and Johnson, 1995).

\[5(CHO) + 4 \text{NO}_3^- + 4\text{H}^+ + 5\text{CO}_2 + 7\text{H}_2\text{O}\]. Once NH$_4^+$ is oxidized to NO$_3^-$ the latter moves downward into the anaerobic zone (eh < +300mV) where it is transformed into NO$_2^-$ and eventually gaseous N$_2$O and N$_2$ (Smil, 2000). Rice and other marsh and swamp plants have a unique capability of absorbing atmospheric O$_2$ into the root system through the
stem (Amstrong, 1967) which lead to existence of aerobic micro-zone around the roots hence predominance of aerobic microflora (IRRI, 1964) that enhance nitrification-denitrification process. Other factors that affect denitrification rate include the presence of easily available carbon (Stanford et al., 1975b), temperature (Stanford et al., 1975a), pH, soil moisture content, soil texture, presence of denitrifying bacteria, and presence of overlying floodwater (Vitosh and Johnson, 1995; Brady and Weil, 1999).

NH_4^+ content in the floodwater and the underlying anaerobic soil profile is derived from various sources including decomposition of soil organic matter in the water column and mineralization of organic N in the aerobic soil layer and floodwater and mass movement of NH_4^+ by diffusion from the anaerobic soil layer to the aerobic soil layer and flood water (Cassman et al., 1998). Movement of NH_4^+ from the anaerobic to aerobic part in the soil occurs by diffusion (Rosenfeld, 1977). Reddy and Patrick (1984) reported NH_3 diffusion coefficient ranging from 0.03 to 0.85 cm2/day. Berner (1979) calculated that 70% of the NH_4^+ liberated from below the 10 cm depth was through diffusion and mixing. Similar NH_4^+ diffusion values were reported by Rosenfeld (1977).

The factors which influence NH_4^+ diffusion rate include NH_4^+ concentration gradient which is a function of the NH_4^+ consumption in the aerobic zone during nitrification and NH_3 volatilization, the NH_4^+ generation rate in the anaerobic zone, the NH_4^+ concentration in the pore water, content of other cations in the exchange complex, cation exchange capacity of the soil and relative pore space which is a function of bulk density (Reddy and Patrick, 1984; Cassman et al., 1998).

2.4.3 Ammonia volatilization

Ammonium volatilization is an important process in mineral N dynamics of wetland soils. This process is mostly predominantly under the alkalinity environment (Palm et al., 1989).
Rates from applied fertilizer can reach up to about 20-22% loss at pH of 9-10 but diminishes considerably at low pH (Singh and Vaje, 1998). According to Simpson (1968) and Vlek et al. (1981) the process of NH$_3$ loss can be presented as follows:

\[
\text{Absorbed NH}_4^+ \rightleftharpoons \text{NH}_4^+ \text{ (in solution)} \rightleftharpoons \text{NH}_3 \text{ (in solution)} \rightleftharpoons \text{NH}_3 \text{ (in soil)}.
\]

The equilibrium is the key factor that determines the direction of the process. The factors that affect NH$_3$ volatilization include pH of the water, floodwater urease activity, NH$_4^+$ content, the N source (Ventura and Yoshida, 1977), and rate, time, and method of application (Mikkelsen et al., 1978; Pedrazzini and Tarsitano, 1998). It has been reported that at pH 5.0 and below, approximately 0.004% of the N is present as free NH$_3$ and the fraction increases to about 10-fold with each unit increase in pH (Loomis and Connor, 1992).

NH$_4^+$ from fertilizers broadcast into a high pH water are highly susceptible to direct NH$_3$ volatilization losses. Mineral N losses from fertilizer broadcast into floodwater also varied with the N source, rate, time, and method of application (Mikkelsen et al., 1978). An acidic or neutral pH favors ionized NH$_3$ whereas an alkaline pH favors the existence of unionized NH$_3$, the critical pH being 7.5 (Reddy and Delaune, 2008). Deep application of mineral N fertilizers reduces NH$_3$ volatilization (Jones et al., 2007). The pick concentration of ammonical mineral N in floodwater of tropical rice fields due to hydrolyzed urea typically occurs 1-5 days after urea application (Buresh et al., 2008). The process is favored by high concentration of ammonical mineral N, high floodwater pH and temperature (Cai, 1997). The magnitude of NH$_3$ loss from submerged soils is directly related to the content of aqueous or partial pressure in water at the interface with the atmosphere (Buresh et al., 2008) of the aqueous NH$_3$ varies with the pH of the water. It is negligible at pH 7.5 but increases rapidly to attain over 40% at pH 9.2 (Loomis and
Connor, 1992). Ammonium loss through volatilization in high pH soils can be reduced through flooding as flooding lower the pH levels (Motomura, 1962).

2.4.4 Leaching

Other losses of mineral N in flooded wetlands include leaching, runoff and seepage. These vary depending on the local conditions. Due to negative charge of soils, NO$_3^-$ is loosely detained in the soil and can readily be leached down the soil profile (Kimetu et al., 2006). Intensification of agricultural production, in particular the use of mineral N fertilizers contributes to higher rate of mineral N loss (Addiscott, 1996). The raised concern of water contamination worldwide has been associated with high rate of NO$_3^-$ leaching. This has been accelerated by the increased of both fertilizer and pesticide application (Spalding and Exner, 1993). Di and Cameron (2002) reported that an increased use of organic fertilizers also contributed to enhanced mineral N loss.

According to Peoples et al. (1995) leaching, runoff, seepages and crop harvesting have been reported to be the principal ways of mineral N loss accounting to about 89% of the mineral N applied in the soil. However, about 20–50% of the N applied is capable of being recovered by most of the annual crops (Paroda et al., 1994). NO$_3^-$ leaching may be managed by better timing of ploughing, improved stock management and precision farming, reducing N application rates, synchronizing N supply to plant demand, use of cover crops and pasture leys (Di and Cameron, 2002).

2.5 Green Manure and other Organic Sources of N in Rice ecosystem

Understanding the mineral N mineralization patterns of green manure legume residues is crucial in the synchronization of N release from plant residue and uptake by subsequent crops. Green Manure decomposition and subsequent N release depend largely on residue quality and quantity, soil moisture and temperature and specific soil factors such as

Raw Text: Connor, 1992. Ammonium loss through volatilization in high pH soils can be reduced through flooding as flooding lower the pH levels (Motomura, 1962).

2.4.4 Leaching

Other losses of mineral N in flooded wetlands include leaching, runoff and seepage. These vary depending on the local conditions. Due to negative charge of soils, NO$_3^-$ is loosely detained in the soil and can readily be leached down the soil profile (Kimetu et al., 2006). Intensification of agricultural production, in particular the use of mineral N fertilizers contributes to higher rate of mineral N loss (Addiscott, 1996). The raised concern of water contamination worldwide has been associated with high rate of NO$_3^-$ leaching. This has been accelerated by the increased of both fertilizer and pesticide application (Spalding and Exner, 1993). Di and Cameron (2002) reported that an increased use of organic fertilizers also contributed to enhanced mineral N loss.

According to Peoples et al. (1995) leaching, runoff, seepages and crop harvesting have been reported to be the principal ways of mineral N loss accounting to about 89% of the mineral N applied in the soil. However, about 20–50% of the N applied is capable of being recovered by most of the annual crops (Paroda et al., 1994). NO$_3^-$ leaching may be managed by better timing of ploughing, improved stock management and precision farming, reducing N application rates, synchronizing N supply to plant demand, use of cover crops and pasture leys (Di and Cameron, 2002).

2.5 Green Manure and other Organic Sources of N in Rice ecosystem

Understanding the mineral N mineralization patterns of green manure legume residues is crucial in the synchronization of N release from plant residue and uptake by subsequent crops. Green Manure decomposition and subsequent N release depend largely on residue quality and quantity, soil moisture and temperature and specific soil factors such as
texture, mineralogy and acidity, biological activity and the presence of other nutrients (Myers et al., 1994). It has been demonstrated that nutrient release to biochemical properties of the substrate, in particular lignin, polyphenols and N content (Palm et al., 2001; Wang et al., 2004; Nziguheba et al., 2005). As a result, even for the same legume, different rates of N mineralization have been observed. Working on the decomposition of 3 legumes, Odhiambo (2010) established mineralization rate constant of 0.004 to 0.008 week\(^{-1}\) for lablab treated soils while for sun hemp treated soils, the mineralization rate constant varied from 0.005 to 0.012 N week\(^{-1}\). Chilagane (2013) reported that Sun hemp tends to release N at a constant rate of 0.012 N week\(^{-1}\), Lablab (0.008 N week\(^{-1}\)) and velvet beans (0.004 N week\(^{-1}\)). These sources are excellent providers of mineral N to subsequent rice crop thus reducing the need for the application of industrial mineral N fertilizers (Yadvinder-Singh et al., 1991). The application of green manure with urea can reduce NH\(_3\) loss. Losses of mineral N from applied green manure are often lower than from urea.

Becker et al. (1995) noted an average loss of mineral N from green manure of 14% of the applied N as compared with 35% mineral N loss from urea. Loss of mineral N from organic sources can be reduced by synchronizing the crop need with the with the mineral N release pattern or by mixing the leguminous green manure with rice straw that has a high C:N ratio as means of retarding mineral N release. Watanabe et al. (1998) measured mineral N recovery rate of up to 62.9% of the applied mineral N from Azolla.

2.6 Effect of Soil Moisture on Nitrogen Status in Wetlands

Previous soil aeration studies have demonstrated the importance of the soil air/water balance upon aerobic and anaerobic microbial activities (Yadvinder-Singh et al., 1991; George et al., 1993). Aerobic microbial activity increases with soil water content until a point is leached where water displaces air and restricts the diffusion and availability of oxygen. Soil moisture expressed in terms of percentage Water Filled Pores control the soil
microbial activity and the related processes such as mineralization and denitrification. Linn and Doran (1984) showed that soil 60% water filled pore (%WFP) was the threshold for supported maximum aerobic microbial activity, below and above which a decrease was noted. According to the authors, non-tilled soils characteristically had higher %WFP than the ploughed soils, and correspondingly showed a huge difference in CO$_2$ and N$_2$O emission between the two.

Maximum rates of microbial respiration, nitrification, and mineralization occur at the highest water content (lowest tension) at which soil aeration remains non-limiting (Buresh et al., 2008). When soil water contents approach or exceed field capacity, the percentage of soil pore space filled with air or water are better indicators of aerobic versus anaerobic microbial activity than either water content or water potential (Gilmour et al., 1977; Linn and Doran, 1984). A number of studies have shown that a soil water content equivalent to 60% of a soil's water-holding capacity (WHC) delineates the point of maximum aerobic microbial activity showed that soil 60% water filled pore (WFP) was the threshold for supported maximum aerobic microbial activity, below and above which a decrease was noted (Pal and Broadbent, 1975; Gilmour et al., 1977; Linn and Doran, 1984).
CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Location and Characteristics of the Study Sites

3.1.1 Location of the study sites

This study was conducted in the Kilombero Valley Floodplain wetland, located in Kilombero district at Morogoro region (Fig. 1). It covers an area of 7967 km² (Samora et al., 2013). The Valley area is characterized by sub-humid tropical climate with relative humidity varying between 70 and 80% and an annual rainfall of about 1200–1400 mm (MNRT, 2004a). The valley is also characterized by two rainy seasons: a short rainy period also known as Vuli that last from December to February and a long rainy season also known as Masika that extends from March to May/June. The atmospheric temperature varies between 20 °C and 30 °C (MNRT, 2004b).

The flood plain is characterized by fertile swelling shrinking type of soils, which are mainly flooded during the long rainy season but develops cracks during the dry season particularly between July and October (Samora et al., 2013). The major activities in the area are agriculture, livestock keeping, fishing and business (Kato, 2007).

3.1.2 Site description of the study sites

Three experimental sites were set up in three villages selected based on their soil hydrological differences. These were Kantindiuka, Kiyongwire and Kivukoni village, whose position with regard to river flooding were Fringe, Middle and Central zone, respectively (Fig. 1). These represent the three distinct hydrological conditions on which the study was based.
The corresponding characteristics of the sites are thus explained. (i) The Center zone refers to the central part of the main wetland water flow. It is characterized by prolonged water saturated conditions with a peak water flood height of 1m and a flooding period of around 2-3 months when water covers the ground surface (ii) The Middle zone is an intermediate position between the prolonged flooded center zone and the least flooded part of the floodplain (Fringe). It is characterized by flooding period less than a month during when flowing water completely cover the land surface but in which the root zone is moist throughout the cropping season and being underlain by a soil layer that is saturated with water throughout the cropping season. (iii) The Fringe zone is saturated with water to the land surface for a period less than 2 months. It enjoys a much longer period of surface water saturation than the Middle zone because it receives seepage water from the hills after rain which last longer than the main river flooding at the former. The site in the center, middle and Fringe part of the Kilombero River flood plain will be referred as Centre, Middle and Fringe zone or site in the rest of the document.
3.1.3 Rainfall of the studied research sites

The distribution of rainfall for the 2015/16 cropping season is shown in Fig. 2.
3.2 Field Experiment and Data Collection

3.2.1 Experimental design

An experiment with six treatments replicated three times in completely randomized block design (CRBD) was laid down at three sites with distinct hydrological conditions during the 2014/5 and July 2015/6 rain season. The treatments were: (i) a semi-natural vegetation that was initially tilled but left with no crop (TR1) (ii) Farmers practices - Rice crop with no added mineral N and without bunds (TR2). (iii) Rice crop + bunds but with no applied mineral N (TR3). (iv) Rice crop +Bunds + 60kg/ha urea (TR4). (v) Rice crop +Bunds + 120kg/ha urea (TR5). (vi) Rice + bunds+ lablab green manure with no mineral N (TR6). In the lablab treatment, the former was incorporated into the soil 45 after germination. The quantity incorporated in the soil contained an equivalent of 50 kg N/ha.

Paddy (Oryza sativa) variety TXD 306 also known as SARO 5” was used as a test crop in this study. The experiment was laid on 5 x 6 m² plots with a plant spacing of 20 x 20 cm² as recommended by Kanyeka et al. (2007). Standard agronomic crop management was maintained throughout the cropping season.

Plate 1: Fringe experimental site four weeks after paddy rice transplantation
3.2.2 Data collection

3.2.2.1 Determination of hydrological-based characteristics

3.2.2.1.1 Rainfall of the studied sites

The rainfall of the studied sites was collected using an automatic weather station. Measurements were recorded hourly and stored in a data logger.

3.2.2.1.2 Soil moisture measurements

Soil moisture data were recorded using Virrib sensors. From each experimental site, a Virrib sensor was installed horizontally at a depth of 10 cm with an automatic measurements logged every 15 minutes (Walker et al., 2004).

3.2.2.1.3 Redox potential measurement

The redox values were determined at each site following the method developed by Vorenhout et al. (2004). Values were continuously recorded on a daily basis using an Ag/AgCl electrode. Configuration and data collection was performed using a mobile computer. Data were processed by a central PIC processor (PIC16F877) and stored in 256 Kbit ferroelectric non-volatile random access memory (FRAM) serial memory. Configuration of and data collection from the data logger were performed with the computer program Hypnos Data Collector Version 1.4, created using LabView (NIC, 1998).

3.2.2.2 Determination of the soil characteristics

Soil samples were collected from the experimental sites for laboratory characterization. From each experimental site, 18 soil samples were randomly collected from the 0-30 cm depth, mixed together to constitute a composite sample. Composite soil samples were packed transported to the laboratory, air-dried, ground and sieved through a 2-mm sieve ready analysis.
3.2.2.3 Soil NH$_4^+$ and NO$_3^-$ content data collection

The following data were collected from the experimental plots: NH$_4^+$ and NO$_3^-$ content. Prior to data determination, soil samples were collected from each individual and prepared as detailed below.

3.2.2.3.1 Soil sampling and sample preparation

Soil samples earmarked for NH$_4^+$ and NO$_3^-$ measurement were collected from individual plots during the 2015/16 rain season. Samples were taken prior and during cropping season. The pre-paddy growing season (dry wet transition period) lasted from 16 December (that corresponded with the start of the 2015/16 short rainy season) to 4 March 2016 with sample collection being carried out at an interval of 1 week. The second season of data collection took place between 18 March and 8 July 2016. Soil samples were collected every two weeks. Soil samples from each plot were randomly collected using a soil auger at the depth from 0-10 cm. six soil samples were collected from each treatment and mixed thoroughly making one composite sample.

Individual samples were then wrapped into labeled plastic bags, kept in a cooling box with ice and immediately taken to the laboratory for analysis. In the laboratory, the samples were immediately frozen prior to extraction and eventually determination of NH$_4^+$ and NO$_3^-$ of the three study sites, sampling at the Valley Centre site was stopped shortly after the start of the short rain season due to flooding.

3.3 Data Analysis

3.3.1 Soil characterization

The collected soil samples were analyzed for particle size distribution, bulk density, porosity, particle density, pH, total N, total carbon, and plant available phosphorus. Particle size analysis was analyzed by the hydrometer method on soil samples dispersed in
a 5% sodium hexametaphosphate solution (Gee and Bauder, 1986). Bulk Density was estimated following the procedure after Blake and Hartage (1986). Particle was determined by pycnometer method after the method developed by Blake and Hartage (1986). Porosity was calculated using the corresponding particle and back density values using the formula $(1 - BD/PD)$, where $BD = $ Bulk density and $PD = $ Particle density).

Organic carbon was determined following the Walkey-Black wet combustion method (Nelson and Sommers, 1982). Total N was analyzed by using the micro-Kjeldahl method after the protocol developed by Bremner and Mulvaney (1982). Available phosphorus was determined following the procedure developed by Olsen and Sommers (1982). pH was measured using a soil: water suspension (1:2:5) in accordance with the protocol after McLean (1982).

3.3.2 Determination of NH$_4^+$ and NO$_3^-$

The frozen samples were defrosted before the NH$_4^+$ and NO$_3^-$ extraction. A separate soil sample was used to determine the moisture content of each studied plot. These samples were defrosted, weighed prior and after oven-drying to constant weight at 105°C. The measurements of dry weight were done using weighting an analytical balance. Approximately 20 to 25g of soil samples were weighed after defrosting and immediately taken to the oven. The moisture content was express as a fraction of the oven-dry weight of the sample in question. This value was used to convert the field obtained weight into the equivalent oven dry weight.

15g equivalent of wet soil were OD weight of the defrosted soil sample were shaken with 90 ml of 0.01M CaCl$_2$ for 60 minutes at 189 rpm (Houbal et al., 1986), filtered, treated with one drop of 0.01 M sulfuric acid to prevent any microbial growth and kept for
measuring the concentration of NH$_4^+$ and NO$_3^-$ (Nascente et al., 2009). The method developed by Reardon et al. (1966) was adopted to determine the NH$_4^+$ concentration in the soil extract. 20 ml volume of the extract was adjusted to pH 7 using 0.01M NaOH (Kunamneni, 2003). An aliquot of 0.1 ml of the neutral (pH 7) extract was pipetted into a 16mm cells and reacted for 20 minutes with vario ammonia Salicylate and Cyanurate F5 powder. The NH$_4^+$ content was calorimetrically determined using photoflex photometer at a wavelength of 690nm. NO$_3^-$ was determined following the methodology developed by Swinehart and Warren (1953). 1ml of the soil extract prepared as described on section 3.4.3 was pipetted into a 16 mm cuvette cells and reacted with vario nitrate Chromotropic powder for 10 minutes. The NO$_3^-$ in the extract was spectrophotometry determined at a wave length of 436nm. Both NH$_4^+$ and NO$_3^-$ were expressed in terms of g/kg soil.

3.4 Statistical Analysis

Post hoc –Tukey HD test and Two-way ANOVA analyses were performed by using GenStat Computer Software (Payne, 2009). The post hoc –Tukey HD test was used to separate the mean values of NH$_4^+$ and NO$_3^-$ contents among the treatments. Two way ANOVA was used to test the effect of the hydrological zone between the Middle and Fringe sites with respect to NH$_4^+$ and NO$_3^-$ content.
CHAPTER FOUR

4.0 RESULTS

4.1 Characteristics of the Studied Soils

The physical and chemical characteristics of the studied soils are presented on Table 1 and 2. The studied soils vary in soil texture. Clay content decreased with increase in distance from the river cause. The Centre site has about 60% clay while the Fringe site had the lowest clay content (30%). The silt content in was high in all sites ranging from 26% in the Centre and Middle sites to 39% in the Fringe site. The soil porosity was 54%, 48% and 54% for Center, Middle and Fringe, respectively. The C/N ratio at the center was 11.8, Middle 12.4 and Fringe16.5. The ratio had an increase depending with the hydrological condition from Center to Fringe.

<table>
<thead>
<tr>
<th>Site name</th>
<th>Physical properties</th>
<th></th>
<th>Physical properties</th>
<th></th>
<th>Physical properties</th>
<th></th>
<th>Physical properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site name</td>
<td>Sand (%)</td>
<td>Silt (%)</td>
<td>Clay (%)</td>
<td>BD (Mg m⁻³)</td>
<td>PD (Mg m⁻³)</td>
<td>Porosity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fringe</td>
<td>29.61</td>
<td>39.61</td>
<td>30.78</td>
<td>1.22</td>
<td>2.66</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>40.34</td>
<td>26.87</td>
<td>32.44</td>
<td>1.34</td>
<td>2.66</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>12.00</td>
<td>26.54</td>
<td>61.47</td>
<td>1.21</td>
<td>2.66</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site name</th>
<th>Chemical properties</th>
<th></th>
<th>Chemical properties</th>
<th></th>
<th>Chemical properties</th>
<th></th>
<th>Chemical properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site name</td>
<td>Organic C (%)</td>
<td>Total N (%)</td>
<td>C/N</td>
<td>Extractable P (mg kg⁻¹)</td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fringe</td>
<td>1.82</td>
<td>0.11</td>
<td>16.5</td>
<td>49.98</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>0.87</td>
<td>0.07</td>
<td>12.4</td>
<td>16.52</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>1.88</td>
<td>0.16</td>
<td>11.8</td>
<td>5.51</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Centre was the most acidic one with pH of 4.9. Soil pH gradually increased from the Centre to the Fringe site with values of 5.8 and 6.1 in the Middle and Fringe sites, respectively. The content of organic carbon was rather low in all sites. It was about 1.8% at both Centre and Fringe sites but only 0.8% at the Middle site. Total N content was comparable between the Centre and Fringe sites (0.16 and 0.11%) but rather low (0.07%) at the Middle site. The corresponding C: N ratio at the Centre, Middle and Fringe was 11.7, 12.4 and 16.5, respectively.

4.2 Variation of Soil Moisture in the Root Zone of the Studied Soils During the Pre-paddy Growing Season

The soil moisture content within 0-10 cm varied over the season as shown on Table 3. At the Middle site, it ranged between 12.3 and 31.6% while at the Fringe it varied from 16.2 to 46.4%. The pattern of moisture content variation differed between the two sites. The Middle zone was rather drier than the Fringe zone during the first 4 weeks with moisture content ranging between 12 and 22% compared with 41 and 46%. It was interesting to note that immediately after the first rains early in December, the Fringe zone became wetter due to surface water flow from the neighboring mountain slopes. This phenomenon did not occur at the Middle site. In view of the fact that the data were not suitable for assessing the contribution to the extent of soil aeration, a phenomenon that is associated with redox processes in the soil (Lin and Doran, 1984), the same was converted into percentage of water filled pore spaces so that they could be used to interpret their relation with redox related characteristics of the studied soils.
Table 3: Variation of soil moisture content in the root zone (0-10cm) in the studied soils during the pre-paddy growing season

<table>
<thead>
<tr>
<th>Site</th>
<th>Week 0</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle</td>
<td>15.1</td>
<td>12.3</td>
<td>13.1</td>
<td>22.7</td>
<td>26.4</td>
<td>24.2</td>
<td>17.5</td>
<td>17.7</td>
<td>19.5</td>
<td>14.4</td>
<td>31.6</td>
</tr>
<tr>
<td>Fringe</td>
<td>43.4</td>
<td>46.4</td>
<td>43.1</td>
<td>41.3</td>
<td>16.2</td>
<td>14.9</td>
<td>16.8</td>
<td>14.7</td>
<td>22.7</td>
<td>29.7</td>
<td>30.6</td>
</tr>
</tbody>
</table>

Table 4 shows that the percentage WFP varied widely within and between the two sites. At the Middle site, it ranged between 22.7 and 53.9% during the 9 out of 10 weeks of the study period, and rose to 64.3% at week 20. At the Fringe site, it varied between the soils during the first 4 weeks with percentage WFP ranging from 76.5 to 86.0%. Thereafter, in particular between week 4 and week 7, the percentage WFP ranged between 27.4 and 31.1%. This was the dried period at this site. From week 9 to week 10 the percentage WFP started to rise again (55.0 to 56.8%). These are discussed later on in conjunction with the variation of NH$_4^+$ and NO$_3^-$ at these sites.

Table 4: Water filled pore space at the Middle and Fringe sites during the pre-paddy growing season

<table>
<thead>
<tr>
<th>Site</th>
<th>Week 0</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle</td>
<td>30.8</td>
<td>25.1</td>
<td>26.7</td>
<td>46.4</td>
<td>53.9</td>
<td>49.4</td>
<td>35.7</td>
<td>36.2</td>
<td>39.9</td>
<td>29.5</td>
<td>64.6</td>
</tr>
<tr>
<td>Fringe</td>
<td>80.5</td>
<td>86.0</td>
<td>79.8</td>
<td>76.5</td>
<td>30.0</td>
<td>27.7</td>
<td>31.1</td>
<td>27.4</td>
<td>42.1</td>
<td>55.05</td>
<td>56.8</td>
</tr>
</tbody>
</table>

4.3 Variation of the Redox Potential in the Root Zone of the Studied Soils

4.3.1 Variation of redox potential at the Middle and Fringe site during the pre-paddy cropping season

The values of the Redox potential at the Middle site varied narrowly during the transition period. They ranged from +341.5 to +394.7 mV.
At the Fringe site, a comparable situation existed between week 0 and week 7. High Eh values (over +600 mV) were noted from week 7 to 10. The values of the redox potential within the root zone for the main cropping season for both Middle and Fringe sites are shown on Table 5. Wide variations existed between the two sites. At the Middle site, Eh ranged from +121.6 to +394.2 mV.

Table 5: Variation of Redox potential (eh) at the Middle and Fringe sites during the pre-paddy cropping season

<table>
<thead>
<tr>
<th>Site</th>
<th>Redox potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0</td>
</tr>
<tr>
<td>Middle</td>
<td>392</td>
</tr>
<tr>
<td>Fringe</td>
<td>358.7</td>
</tr>
</tbody>
</table>

4.3.2 Variation of redox potential at the Middle and Fringe sites during the paddy cropping season

The lowest values were recorded during the first 3 (121.6 to 237.0 mV) while from week 6-16, readings varied between 348.1 and 478.0 mV). A similar trend, though with some variations, was noted at the Fringe site. In general, the studied soils at the Middle and Fringe sites tended to have higher redox values towards the late stage of the cropping season (Table 6). For instance, at the Middle site, this started at week 6, while it was from week 12 onwards at the Fringe site.
Table 6: Variation of redox potential at the Middle and Fringe site during the paddy-cropping season

<table>
<thead>
<tr>
<th>Site</th>
<th>Week 0</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 6</th>
<th>Week 8</th>
<th>Week 10</th>
<th>Week 12</th>
<th>Week 14</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle</td>
<td>237.0</td>
<td>204.8</td>
<td>121.6</td>
<td>348.3</td>
<td>394.2</td>
<td>347.3</td>
<td>478.0</td>
<td>349.0</td>
<td>349.4</td>
</tr>
<tr>
<td>Fringe</td>
<td>195.3</td>
<td>209.2</td>
<td>352.3</td>
<td>242.9</td>
<td>403.7</td>
<td>295.5</td>
<td>408.3</td>
<td>350.2</td>
<td>357.5</td>
</tr>
</tbody>
</table>

4.4 Effect of Crop Management Interventions on the Variation of \(\text{NH}_4^+ \) Content

The data that shows the variation of \(\text{NH}_4^+ \) content in the studied soils is separated into two seasons: the dry-wet transitional (pre-paddy growing season) and the paddy cropping seasons, respectively.

4.4.1 \(\text{NH}_4^+ \) variability during the pre-paddy growing season

The data presented below consists of 2 sites: The Middle and the Fringe sites, respectively.

4.4.1.1 \(\text{NH}_4^+ \) content at the Middle site

The \(\text{NH}_4^+ \) content varied in results and involves 4 stages. The initial \(\text{NH}_4^+ \) content at the start of the rainy season, increase in \(\text{NH}_4^+ \) to attain a peak value, decrease from the peak \(\text{NH}_4^+ \) content to 0 g/kg soil, and lastly increase in \(\text{NH}_4^+ \) content (Fig. 3). At week 0, the \(\text{NH}_4^+ \) content at the Middle site was highest in TR6 (0.00215 g/kg soil) and lowest in TR2 and TR5 (0.000698 and 0.000958 g/kg soil), respectively. These values were significantly different at \(P = 0.05 \) (Table 7). The remaining treatments had intermediate values.
WKT: Week before Transplanting Rice (Dry –wet transition weeks)

Figure 3: Pre-rice growing season NH₄⁺ variation at the Middle site

NH₄⁺ increased modestly with increase in time from week 0 to reach a peak value at between week 4 and 6 (Fig. 4). The corresponding NH₄⁺ peak values were as follows: TR6>TR5>TR3>TR4>TR1>TR2. Between week 4 and 6, depending on the treatment in question, there occurred a gradual decline in NH₄⁺ to attain lowest values at week 9 before the gradual increase at week 10 (Fig. 4). This increase attained significantly difference values at week 10 (Table 7) with TR3 attaining the highest value.
Table 7: Effect of crop management interventions on the NH$_4^+$ content during the pre-paddy growing season at the Middle site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NH$_4^+$ content (g/kg soil)</th>
<th>Week 0</th>
<th>Week 1</th>
<th>Week 6</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td></td>
<td>0.00158ab</td>
<td>0.002476a</td>
<td>0.000204a</td>
<td>0.002154ab</td>
</tr>
<tr>
<td>TR2</td>
<td></td>
<td>0.000698a</td>
<td>0.000992a</td>
<td>0.000514a</td>
<td>0.002836ab</td>
</tr>
<tr>
<td>TR3</td>
<td></td>
<td>0.001058ab</td>
<td>0.001242a</td>
<td>0.002058ab</td>
<td>0.004212bc</td>
</tr>
<tr>
<td>TR4</td>
<td></td>
<td>0.001121ab</td>
<td>0.00102a</td>
<td>0.004525b</td>
<td>0.001955ab</td>
</tr>
<tr>
<td>TR5</td>
<td></td>
<td>0.000958a</td>
<td>0.001121a</td>
<td>0.004325b</td>
<td>0.005478d</td>
</tr>
<tr>
<td>TR6</td>
<td></td>
<td>0.002158b</td>
<td>0.001383a</td>
<td>0.007207c</td>
<td>0.00361abc</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.001262</td>
<td>0.001135</td>
<td>0.00314</td>
<td>0.00337</td>
</tr>
<tr>
<td>F statistics</td>
<td></td>
<td>0.019</td>
<td>0.1</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>L.S.D</td>
<td></td>
<td>0.0007662</td>
<td>0.000663</td>
<td>0.001666</td>
<td>0.00141</td>
</tr>
<tr>
<td>CV(%)</td>
<td></td>
<td>5.3</td>
<td>14.4</td>
<td>5.3</td>
<td>24.7</td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

At week 6, there were large differences in NH$_4^+$ content among the treatments which can be grouped into 4 categories: TR6 stood alone with the highest NH$_4^+$ content (0.00720 g/kg soil) followed by TR4 and TR5 category (0.004525 and 0.004325 g/kg soil), respectively and TR3 (0.002058 g/kg soil) while the last category which also had the lowest NH$_4^+$ content consisted of TR2 and TR1 (0.000514 and 0.00020 g/kg soil), respectively. These categories were statistically significantly different (Table 7). From week 9 to week 10 there was a large increase in NH$_4^+$ in almost all treatments. The highest and lowest NH$_4^+$ content at week 10, occurred in TR 5 and TR3 (0.005478 and 0.004212 g/kg soil), respectively.

4.4.1.2 NH$_4^+$ content at the Fringe site

NH$_4^+$ variation at the Fringe site varied with time as shown in Fig. 4. The NH$_4^+$ content on the first day, immediately after the first rain episode, varied widely among treatments.
Treatments TR2, TR3, TR4 and TR5 had significantly (P = 0.05) higher NH$_4^+$ (over 0.003 g/kg soil) content than TR1 and TR6 (0.001 and 0.002 g/kg soil), respectively (Table 8). Generally, the NH$_4^+$ content varied over the pre-paddy growing season in all treatments. The content of NH$_4^+$ characteristically varied showing three distinctive periods irrespective of the imposed management intervention. These were: initial period which corresponds with the on start of the rains during when the NH$_4^+$ content was relatively high and showed a tendency of increase to reach a peak value, followed by a second period during when the NH$_4^+$ content decreased with time to attain 0 value and lastly a period of NH$_4^+$ increase with time (Fig. 4).

![Graph showing NH$_4^+$ content during the pre-paddy growing season at the Fringe site](image-url)

WKT: Week before transplanting rice (dry – wet transition weeks)

Figure 4: NH$_4^+$ content during the pre-paddy growing season at the Fringe site

During the first phase of increase in NH$_4^+$, differences existed both in the peak value and the period required to attain it. For instance, in TR4 (60 kg N + bunds) NH$_4^+$ almost doubled (0.003 to 0.005 g/kg soil) over a week. A similar trend was observed in TR6 (Green manure + bunds) with an increase from 0.01 (in week 0) to 0.004 g/kg soil (in week 3) (Table 8). The remaining treatments showed a less pronounced increase in
NH₄⁺ and differed in the period to reach peak NH₄⁺ content. TR3, TR4 and TR5 reached peak NH₄⁺ values at week 1, and TR1 and TR2 attained it at week 2 while that of TR6 was at week 3.

Table 8: Effect of crop management interventions on the NH₄⁺ content at selected periods during the pre-paddy growing season at the Fringe site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NH₄⁺ content (g/kg soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0</td>
</tr>
<tr>
<td>TR1</td>
<td>0.001955ab</td>
</tr>
<tr>
<td>TR2</td>
<td>0.003805c</td>
</tr>
<tr>
<td>TR3</td>
<td>0.003314c</td>
</tr>
<tr>
<td>TR4</td>
<td>0.003126bc</td>
</tr>
<tr>
<td>TR5</td>
<td>0.003471c</td>
</tr>
<tr>
<td>TR6</td>
<td>0.001371a</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00284</td>
</tr>
<tr>
<td>F statistic</td>
<td>0.9</td>
</tr>
<tr>
<td>L.S.D</td>
<td>0.000871</td>
</tr>
<tr>
<td>CV (%)</td>
<td>9.0</td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

There was a different pattern of decrease in NH₄⁺, from the peak value to the lowest among the treatments as shown on Fig. 4. The start of the decrease was as follows: week 1 for TR2, TR3, TR4 and TR5; week 2 for TR2 and week 3 for TR6. Lowest or absolute 0 values were reached at different periods: week 4 for TR4 and TR5; and week 5 for the rest of the treatments.

The period during when there was no NH₄⁺ also varied with treatments: 4 weeks (week 4-7) for TR4 and TR5; 3 weeks (week 5 to week 7) for TR2 and TR3 (week 5 to week 7); 2 weeks (week 5 to week 6) for TR1 and TR6, respectively.
The increase in NH$_4^+$ during the last phase also varied among treatments. The largest increase at week 10 was observed in TR1 (0.006 g/kg soil) while the lowest (0.003 g/kg soil) was recorded on TR6. The difference among treatments was statistically significant (P = 0.05) at week 10 (Table 8).

The period of mineralization to attain peak NH$_4^+$ followed the trend: RT4>TR6=TR5=TR3=TR2>TR1. These results indicate that the lablab green manure treatment led in the turnover of peak NH$_4^+$ followed by the urea-treated treatments (TR4 and TR5) ones and eventually the control. The treatment with bunds behaving like the ones which received mineral N. Difference in the amount of added urea was not reflected in the peak NH$_4^+$ content.

4.4.2 NH$_4^+$ variability during the paddy cropping season

4.4.2.1 Content of NH$_4^+$ in valley Middle

NH$_4^+$ variation at Middle site over the rice-cropping season is indicated in Fig. 5. The NH$_4^+$ content at week 0 (just after planting of the rice) varied slightly among treatments.

Figure 5: NH$_4^+$ content during the paddy-cropping season at the Middle site
It was highest in TR5 (0.02731 g/kg soil) and lowest in TR2 (0.00993 g/kg soil). The values for TR4, TR5 and TR6 at week 0 were higher ($P = 0.05$) than that of the rest of the treatments (Table 9). It is also important to note that significant differences in NH$_4^+$ occurred among the treatments even at subsequent periods during the rice-cropping season.

Table 9: Effect of crop management interventions on the NH$_4^+$ content during the paddy-cropping season at the Middle site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Week 0</th>
<th>NH$_4^+$ content (g/kg soil)</th>
<th>Week 8</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>0.01112a</td>
<td>0.0064bc</td>
<td>0.008739b</td>
<td></td>
</tr>
<tr>
<td>TR2</td>
<td>0.01003a</td>
<td>0.000289a</td>
<td>0.001486a</td>
<td></td>
</tr>
<tr>
<td>TR3</td>
<td>0.00993a</td>
<td>0.000669a</td>
<td>0.001465a</td>
<td></td>
</tr>
<tr>
<td>TR4</td>
<td>0.01633b</td>
<td>0.009733c</td>
<td>0.002018a</td>
<td></td>
</tr>
<tr>
<td>TR5</td>
<td>0.02731c</td>
<td>0.030381d</td>
<td>0.002914a</td>
<td></td>
</tr>
<tr>
<td>TR6</td>
<td>0.016b</td>
<td>0.003369ab</td>
<td>0.002564a</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.01512</td>
<td>0.00847</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>L.S.D</td>
<td>0.001891</td>
<td>0.002127</td>
<td>0.001252</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>3</td>
<td>1.5</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

*aMeans in the same column followed by the same letter(s) are not significantly different according to Tukey test ($P = 0.05$).

In general, there was a decrease in NH$_4^+$ content with time in most of the treatments over the 16-week period. TR4 and TR5 behaved differently by showing a sharp rise in NH$_4^+$ at week 8 (0.009733 and 0.03038 g/kg soil) but thereafter, both showed a similar trend of decline in NH$_4^+$ content with time up to week 16. The highest decrease within the 16 weeks in NH$_4^+$ content was noted in TR5 (0.024746 g/kg soil) while the least was recorded in TR3 (0.007912 g/kg soil).

Whereas, TR1, TR2 and TR3 had significantly lower NH$_4^+$ during the early stages of the rice-cropping season, toward the crop maturity TR1 had significantly higher NH$_4^+$ content compared with the rest of the treatments at week 16 (Table 9).
4.4.2.2 Content of NH₄⁺ in valley Fringe zone

In Fig. 6, shows the variation of NH₄⁺ at the Fringe site. At week 0, the NH₄⁺ content was highest in TR5 (0.02987 g/kg soil) followed by TR6 (0.01841 g/kg soil). On the other hand, TR1, TR2 and TR3 had the lowest values. These differences were significantly different (P = 0.05) from the rest (Table 10).

TR2, TR3 and TR5 maintained the same trend even at later stages of the cropping season as exemplified at week 8 and 16 (Table 10). However, just like in the case of the Middle site, TR1 maintained significantly higher NH₄⁺ values during the same period.

Figure 6: NH₄⁺ content during the paddy-cropping season at the Fringe site
Table 10: Effect of crop management interventions on the NH$_4^+$ content during the paddy-cropping season at the Fringe site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NH$_4^+$ content (g/kg soil)</th>
<th>Week 0</th>
<th>Week 8</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>0.01123a</td>
<td>0.00492b</td>
<td>0.010551d</td>
<td></td>
</tr>
<tr>
<td>TR2</td>
<td>0.00987a</td>
<td>0.000213a</td>
<td>0.003653a</td>
<td></td>
</tr>
<tr>
<td>TR3</td>
<td>0.01002a</td>
<td>0.000083a</td>
<td>0.003627a</td>
<td></td>
</tr>
<tr>
<td>TR4</td>
<td>0.01633b</td>
<td>0.009513c</td>
<td>0.005379ab</td>
<td></td>
</tr>
<tr>
<td>TR5</td>
<td>0.02987c</td>
<td>0.027823d</td>
<td>0.008084c</td>
<td></td>
</tr>
<tr>
<td>TR6</td>
<td>0.01841b</td>
<td>0.001975ab</td>
<td>0.007236bc</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.01595</td>
<td>0.00742</td>
<td>0.00642</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>L.S.D</td>
<td>0.001966</td>
<td>0.001805</td>
<td>0.001361</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>2.2</td>
<td>1.9</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

The NH$_4^+$ content rose sharply at week 8 in TR4 and TR5 (0.009513 g/kg soil from 0.003032 g/kg soil and 0.027823 g/kg soil from 0.003032 g/kg soil at week 6 for TR4 and TR5, respectively) (Fig. 6). These peak values were statistically significant (P = 0.05). Apart from the special phenomenon for TR4 and 5 at week 8, the general trend for the rest of the treatments was a decline in NH$_4^+$ content from week 0 to week 6 or 8 depending on the treatment in question, a slight increase of the same at week 10 and stagnation for the rest of the cropping season to week 16.

4.5 Effect of Crop Management Interventions on the Variation of NO$_3^-$ Content

The data that shows the variation of NO$_3^-$ content in the studied soils is separated into two periods: the pre-paddy growing season and the and the paddy cropping period, respectively.
4.5.1 NO$_3^-$ content during the pre-rice cropping period

The results which are presented here include those of the NO$_3^-$ content both at the Middle and Fringe sites.

4.5.1.1 NO$_3^-$ content at the Middle site

The NO$_3^-$ content at the start of the rain season varied slightly among the treatments with TR6 and TR2 having the highest and lowest (0.002951 and 0.002324 g/kg soil) values, respectively (Fig. 7).

![Graph showing NO$_3^-$ content during the pre-paddy growing season at the Middle site]

WKT: Week before transplanting rice (dry – wet transition weeks)

Figure 7: NO$_3^-$ content during the pre-paddy growing season at the Middle site

The NO$_3^-$ content decreased to attain 0 g/kg soil in all treatments within two weeks. From week 3 to week 5 week, depending on individual treatment, there was positive change in NO$_3^-$ content.
Table 11: Effect of crop management interventions on the NO$_3^-$ content during the pre-paddy growing season at the Middle site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Week 0</th>
<th>NO$_3^-$ content (g/kg soil)</th>
<th>Week 6</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>0.002324a</td>
<td>0.0001821a</td>
<td>0.000621a</td>
<td></td>
</tr>
<tr>
<td>TR2</td>
<td>0.001706a</td>
<td>0.000153a</td>
<td>0.000903ab</td>
<td></td>
</tr>
<tr>
<td>TR3</td>
<td>0.002383a</td>
<td>0.0002505a</td>
<td>0.001285b</td>
<td></td>
</tr>
<tr>
<td>TR4</td>
<td>0.002645a</td>
<td>0.0003933a</td>
<td>0.001195ab</td>
<td></td>
</tr>
<tr>
<td>TR5</td>
<td>0.002448a</td>
<td>0.0003612a</td>
<td>0.001283ab</td>
<td></td>
</tr>
<tr>
<td>TR6</td>
<td>0.002951a</td>
<td>0.0005301a</td>
<td>0.001159ab</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.00241</td>
<td>0.000312</td>
<td>0.001075</td>
<td></td>
</tr>
<tr>
<td>F statistics</td>
<td>1.01</td>
<td>0.08</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>L.S.D</td>
<td>0.000822</td>
<td>0.000271</td>
<td>0.000396</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>9.2</td>
<td>10.3</td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

This increase was noted all the way through from week 0 to week 10 though the pattern varied among treatments. These increases in NO$_3^-$ were, nevertheless, not statistically significant (P = 0.05) except at week 10, where the NO$_3^-$ value in TR1 (0.000621 g/kg soil) was statistically significantly lower than that measured in the rest of the treatments (Table 11).

4.5.1.2 NO$_3^-$ content at the Fringe site

The content of NO$_3^-$ at the Fringe site during the pre-paddy growing season is shown on Fig. 8. At week 0 TR6 had the highest value (0.002104 g/kg soil). There was virtually no NO$_3^-$ in the rest of the treatments.
WKT: Week before transplanting rice (dry – wet transition weeks)

Figure 8: NO$_3^-$ content during the pre-paddy growing season at the Fringe site

Table 12: Effect of crop management interventions on the NO$_3^-$ content during the pre-paddy growing season at the Fringe site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NO$_3^-$ content (g/kg soil)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0</td>
<td>Week 6</td>
<td>Week 10</td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td>0.0003604a</td>
<td>0a</td>
<td>0.0010126a</td>
<td></td>
</tr>
<tr>
<td>TR2</td>
<td>0.0003482a</td>
<td>0a</td>
<td>0.0007507a</td>
<td></td>
</tr>
<tr>
<td>TR3</td>
<td>0.0001057a</td>
<td>0a</td>
<td>0.0009195a</td>
<td></td>
</tr>
<tr>
<td>TR4</td>
<td>0.0000337a</td>
<td>0a</td>
<td>0.000453a</td>
<td></td>
</tr>
<tr>
<td>TR5</td>
<td>0a</td>
<td>0a</td>
<td>0.0010683a</td>
<td></td>
</tr>
<tr>
<td>TR6</td>
<td>0.00004594a</td>
<td>0a</td>
<td>0.0006769a</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.000492</td>
<td>0</td>
<td>0.000814</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>0.001</td>
<td>0</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>L.S.D</td>
<td>0.0003849</td>
<td>0</td>
<td>0.000509</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>30.3</td>
<td>0</td>
<td>17.3</td>
<td></td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

Between week 1 and 7, with an exception of TR6, there was virtually no NO$_3^-$ in the root zone for most of the imposed treatments. Increase in NO$_3^-$ took place differently among treatments between week 7 and 10. However, the noted differences were not statistically
significant \((P = 0.05)\) (Table 12). At week 10 therefore, the root zone \(\text{NO}_3^-\) ranged from 0.000453 (TR 4) to 0.0010683 (TR 5) g/kg soil, respectively.

4.5.2 \(\text{NO}_3^-\) content during the paddy cropping season

4.5.2.1 \(\text{NO}_3^-\) content at Middle zone

These results show the following characteristics: Initial relatively high \(\text{NO}_3^-\) values that vary among treatment separating the latter into 3 categories and which are statistically significantly different \((P = 0.05)\) (Table 13), decline of \(\text{NO}_3^-\) to attain absolute or close to 0 g/kg soil from week (except for TR 4 and TR 5) that showed a unique rise in \(\text{NO}_3^-\) at week 8) to the rest of the cropping season (Fig. 9).

\[\text{WKAP: Weeks after transplanting rice}\]

\[\text{Figure 9: NO}_3^-\text{ content the rice paddy-cropping season at the Middle site}\]

At week, 0 the \(\text{NO}_3^-\) content was highest in TR 5 (0.010681 g/kg soil) followed by TR 4 (0.005722 g/kg soil). The two were significantly different \((P = 0.05)\) from the rest of the treatments (Table 13). There was an abrupt rise in the \(\text{NO}_3^-\) content at week 8 in TR 5 to
attain 0.011948 kg/kg from soil 0 g/kg soil at week 6. A similar trend occurred in TR4 (0.00675 g/kg soil at week 8 compared with 0 g/kg soil at week 6).

Table 13: Effect of crop management interventions on the NO$_3^-$ content during the rice-cropping season at the Middle site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NO$_3^-$ content (g/kg soil)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0</td>
<td>Week 8</td>
<td>Week 16</td>
</tr>
<tr>
<td>TR1</td>
<td>0.00378a</td>
<td>0.001113a</td>
<td>0.0031145b</td>
</tr>
<tr>
<td>TR2</td>
<td>0.003474a</td>
<td>0a</td>
<td>0.0002873a</td>
</tr>
<tr>
<td>TR3</td>
<td>0.003075a</td>
<td>0a</td>
<td>0.000463a</td>
</tr>
<tr>
<td>TR4</td>
<td>0.005722b</td>
<td>0.00675b</td>
<td>0.0007468a</td>
</tr>
<tr>
<td>TR5</td>
<td>0.010681c</td>
<td>0.011948c</td>
<td>0.0007007a</td>
</tr>
<tr>
<td>TR6</td>
<td>0.00336a</td>
<td>0.000852a</td>
<td>0.00047a</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00502</td>
<td>0.00344</td>
<td>0.00096</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>L.S.D.</td>
<td>0.000997</td>
<td>0.001291</td>
<td>0.000985</td>
</tr>
<tr>
<td>CV (%)</td>
<td>2.2</td>
<td>3.8</td>
<td>14.9</td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).

In both cases, the NO$_3^-$ thereafter declined to attain close to 0 g/kg soil at week 12 and remained almost constant to week 16. TR1 had a minor but insignificant increase of NO$_3^-$ from week 6 to week 16.

4.5.2.2 NO$_3^-$ content at the Fringe site

The NO$_3^-$ variation during the rice cropping season resembled that of the Middle site with two exceptions: significantly high (P = 0.05) TR1 value than the rest of the treatments at week 16 and an abrupt rise in NO$_3^-$ content in TR3 at week 10 (Fig. 10).
WKAP: Week after transplanting rice

Figure 10: NO₃⁻ content the rice paddy-cropping season at the Fringe site

Table 14: Effect of crop management interventions on the NO₃⁻ content during the rice paddy-cropping season at the Fringe site

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NO₃⁻ content (g/kg soil)</th>
<th>Week 0</th>
<th>Week 8</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td></td>
<td>0.004646a</td>
<td>0.000354a</td>
<td>0.003662b</td>
</tr>
<tr>
<td>TR2</td>
<td></td>
<td>0.00242a</td>
<td>0a</td>
<td>0.000408a</td>
</tr>
<tr>
<td>TR3</td>
<td></td>
<td>0.003047a</td>
<td>0a</td>
<td>0.000238a</td>
</tr>
<tr>
<td>TR4</td>
<td></td>
<td>0.003686a</td>
<td>0.002085a</td>
<td>0.000663a</td>
</tr>
<tr>
<td>TR5</td>
<td></td>
<td>0.009302b</td>
<td>0.009691b</td>
<td>0.000691a</td>
</tr>
<tr>
<td>TR6</td>
<td></td>
<td>0.005841ab</td>
<td>0.000643a</td>
<td>0.000402a</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.00482</td>
<td>0.00213</td>
<td>0.00101</td>
</tr>
<tr>
<td>F statistic</td>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>L.S.D</td>
<td></td>
<td>0.002291</td>
<td>0.001988</td>
<td>0.001029</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>13.4</td>
<td>20.6</td>
<td>22.9</td>
</tr>
</tbody>
</table>

*Means in the same column followed by the same letter(s) are not significantly different according to Tukey test (P = 0.05).
At week 0, TR5 had the highest NO$_3^-$ (0.009302 g/kg soil) followed by TR6 (0.005841 g/kg soil) while the lowest NO$_3^-$ value was recorded in TR 2 (0.00242 g/kg soil) (Table 14).

4.6 Effect of Hydrological Conditions on the NH$_4^+$ and NO$_3^-$ Variation During the Paddy Growing Season

This section deals with the results of the NH$_4^+$ and NO$_3^-$ content as affected by both the imposed treatments and the hydrologic conditions. These are pooled results of the studied hydrological conditions (Middle and Fringe sites). Due to the existence similarity in magnitude and trends in the content of both NH$_4^+$ and NO$_3^-$ values in the treatments between the pooled values (Middle and Fringe combined) and those from the individual sites (Middle or Fringe) as presented in section 4.4.2 (for NH$_4^+$) and 4.5.2 (for NO$_3^-$), in this section, the focus will be put on the results showing the effect of hydrological conditions on NH$_4^+$ and NO$_3^-$ content.

4.6.1 Effect of hydrological conditions on the content of NH$_4^+$

The values of NH$_4^+$ for a given week at both the Middle and Fringe sites are presented in Fig. 11. Statistical comparisons of the NH$_4^+$ content between the two sites are shown on Table 15 and 16.

<table>
<thead>
<tr>
<th>Variate: NH$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE OF VARIATION</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Block (site)</td>
</tr>
<tr>
<td>Treatment.Block</td>
</tr>
<tr>
<td>Residual</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
There was no significant difference between the sites with different hydrological conditions throughout the entire study period of 16 weeks. This is exemplified on Table 15, 16.

Table 16: Two-way ANOVA for NH$_4^+$ content comparison between the Middle and Fringe sites at week 6.

<table>
<thead>
<tr>
<th>Variate: NH$_4^+$</th>
<th>Source of variation</th>
<th>D.F.</th>
<th>S.S.</th>
<th>M.S.</th>
<th>V.R.</th>
<th>F PR.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replicate stratum</td>
<td>2</td>
<td>2.166E-05</td>
<td>1.083E-05</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>5</td>
<td>2.050E-04</td>
<td>4.100E-05</td>
<td>7.71</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>Block</td>
<td>1</td>
<td>1.538E-10</td>
<td>1.538E-10</td>
<td>0.00</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>Treatment.Block</td>
<td>5</td>
<td>7.124E-06</td>
<td>1.425E-06</td>
<td>0.27</td>
<td>0.926</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>22</td>
<td>1.170E-04</td>
<td>5.317E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>3.507E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These results therefore indicate that irrespective of the treatment in consideration, there was no significant difference in NH$_4^+$ content between the Middle and the Fringe site throughout the rice-growing season. Therefore, these results indicate that the site hydrology did not have a significant influence over the NH$_4^+$ status.
4.6.2 Effect of hydrological zone on the root zone NO$_3^-$ content

The variation of the NO$_3^-$ content at the Middle and the Fringe sites for the 16 weeks of the study is shown in Fig. 12. There was no significant difference in NO$_3^-$ content for the entire period of the study. This is shown as an example on Table 17.

![Figure 12: NO$_3^-$ content in the different treatments at the Middle and Fringe sites during the paddy-growing season](image)

Table 17: Two-way ANOVA for NO$_3^-$ content comparison between the Middle and Fringe sites at week 0

<table>
<thead>
<tr>
<th>Variate: NO$_3^-$</th>
<th>Source of variation</th>
<th>D.F.</th>
<th>S.S.</th>
<th>M.S.</th>
<th>V.R.</th>
<th>F PR.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replicate stratum</td>
<td>2</td>
<td>2.465E-06</td>
<td>1.233E-06</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>5</td>
<td>2.023E-04</td>
<td>4.046E-05</td>
<td>41.24</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>Blocks</td>
<td>1</td>
<td>3.309E-07</td>
<td>3.309E-07</td>
<td>0.34</td>
<td>0.567</td>
</tr>
<tr>
<td></td>
<td>Treatment. Blocks</td>
<td>5</td>
<td>2.077E-05</td>
<td>4.154E-06</td>
<td>4.23</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>22</td>
<td>2.158E-05</td>
<td>9.810E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>2.474E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results for statistical analysis on NO$_3^-$ in the later periods (Week 0 to week 16) were no pronounced differences between the Middle and the Fringe. The interaction between blocks and treatments were statistically difference in some weeks. These results therefore indicate that the site hydrology did not have a significant influence over the NO$_3^-$ status.
CHAPTER FIVE

5.0 DISCUSSION

5.1 Effect of Crop Management Interventions on the Variation of NH$_4^+$ Content

This discussion is separated into two sections pre-rice cropping season and the rice-cropping season.

5.1.1 Variation of NH$_4^+$ during the pre-rice growing season (Dry-wet transition period) at both sites: Middle and Fringe site

These results are discussed separately at each of the studied sites and thereafter by comparing the two together. Also, a reflection is given on the seasonal variation between the pre rice growing season (wet-dry transitional period) that corresponds to the short rain season and the long rain season which is also referred to as the paddy cropping season.

The main features of the NH$_4^+$ variation during the wet-dry transitional season were increase in NH$_4^+$ within the initial period following the first rainfall to reach a peak value; decrease of the same to attain 0 g/kg soil value of NH$_4^+$ content and an eventual rise towards the end of the season. This trend is characteristic of both sites during the wet-dry season.

The increase in NH$_4^+$ content following initial rains is attributed to mineralization, a phenomenon that has been widely associated with decomposition of organic matter to release nutrients in a mineral form including NH$_4^+$ (Yadvinder-Singh et al., 1991; Nziguheba et al., 2005; Sugihara et al., 2010a, b). Differences in the peak value among treatments can be considered as a reflection of the content of mineralizable N in the substrate which is the soil organic matter (Wang et al., 2004; Nziguheba et al., 2005).
Mineralization will normally continue as long as the conditions allow, including presence of substrate. The factors which control mineralization include pH, C:N ratio, redox potential, microbial activity and microbial biomass, availability of electron acceptors, cation exchange capacity, amount and nature of clay, nature and amount of salts, inputs and nature of organic materials, soil organic matter content and quality and the supply of nutrients such as phosphorus (P) among others, are important for ammonium production in submerged rice soils (Deenik, 2006; Inamura et al., 2009). Most of these factors were similar if not exact among the treatments except the organic matter content and probably the C/N ratio. It is obvious that the treatments that were fertilized with N, organic or inorganic are expected to have developed more biomass than those without and hence have a much higher mineralizable N and a much longer period of attaining the peak NH$_4^+$ content (Palm et al., 2001; Kimetu et al., 2006). This appears to be the case for the Middle site in which TR6, TR5 and TR4 had among the highest peak NH$_4^+$ values compared with the rest of the treatments. It is important to point out that the mineralization equally occurred at the Fringe site with much less pronounced differences among the treatments compared with the same at the Middle site. The lack of consistence in the peak NH$_4^+$ content and the duration to attain it cannot be well explained. This may be partly attributed to the much higher percentage water filled pore space during the first 3 weeks. Also, differences among treatments were noted with regard to the rate of losing water through natural drainage after rain episode (Plate 1), a phenomenon that was not characterized. The soil at the Fringe site was wetter between week 0 and week 3, with percentage WFP values stood at 80.51% at week 0, 86.05% at week 1 and 79.85 and 76.55 % at week 2 and week 3, respectively. These conditions are sub-optimal for both decomposition of organic matter (Gilmour et al., 1977) ammonification (Pal and Broadbent, 1975). This could be the reason why the Middle site, whose percentage WFP values attained a maximum of 53.89% during the period that led to peak mineralization. Linn and Doran (1984) showed the
linear relationship between microbial activity and WFP values between 30 and 60% with the latter being typically the optimal moisture conditions for microbiologically controlled processes including mineralization.

From these results, it is clear that the mineralization period for peak NH$_4^+$ production ranged between 3 and 6 weeks at the Middle site and between 1 and 3 weeks at the Fringe site. The difference is mostly likely linked with differences in soil moisture status, the latter being more humid and having a percentage water saturation of above the field capacity (>60%) during the first 4 weeks of the start of the rain season. In addition, mineralization tended to take longer period with relatively higher peak NH$_4^+$ in the treatments that had higher biomass incorporated in the soil in the previous season.

The similarity in the trend of decline in NH$_4^+$ between the Middle and Fringe sites tends to suggest existence of similar influencing factors. The decline can be associated with many pathways including plant uptake, leaching (where conditions allow) (Kimetu et al., 2006), volatilization (Jones et al., 2007), nitrification (Reddy and DeLaune, 2008; Sahrawat, 2010), deamination (Reddy and DeLaune, 2008), decline in decomposable organic matter (George et al., 1993) and plant uptake (Begon et al., 1998; Marschner, 2008). In the first instance, the phenomenon is largely attributed to nitrification and plant uptake of both NH$_4^+$ and NO$_3^-$. The reason for associating the decline with nitrification is supported by the existing aerobic conditions during this period as evidenced by the high redox potential values (Table 5). A number of previous studies have related redox values of > + 300 mV with aerobic conditions (Inglett et al., 2005; Pezeshki and Delaune, 2012) which are conducive to nitrification (George et al., 1993; Reddy and DeLaune, 2008). The NH$_4^+$ decline period coincided with a considerable decrease in soil moisture content (Table 3). During this period, the percentage of water filled pore (%WFP) ranged from 35.7% (week
6) and 29.57% (Table 4). Under such low moisture content soil microbial-led, processes including organic matter decomposition and mineralization take place at a low level (Pal and Broadbent, 1975; Gilmour et al., 1977; Linn and Doran, 1984). According to Linn and Doran (1984), at <30% WFP, microbial activity become severely reduced.

The rapid rise in NH$_4^+$ content in all treatments from week 9 to week 10 is attributed to the increase in soil moisture. The soil moisture status changed from 14.49% moisture content, equivalent of 29.57% WFP at week 9 to 34.67% (64.63% WFP) at week 10. According to Linn and Doran (1984) the %WFP value at week 10 can be considered to be close to optimal for microbial based processes such as mineralization. The NH$_4^+$ turnover at week 10 reflect the NH$_4^+$ supply capacity of the soil just prior to rice crop transplant. This is in concordance with previous observations that dry conditions are ideal for the soil microbial biomass that act as both nutrient sink and source of nutrients tropical ecosystems prior to the subsequent rain season (Tripathi and Sigh, 2007; Sugihara et al., 2010a). The soil’s NH$_4^+$ supply capacity was highest in TR5 and TR3 in that decreasing order and outperformed the rest of the treatments at the Middle site, while at the Fringe site it is TR1 that recorded the highest value.

5.1.2 NH$_4^+$ variability during the paddy cropping season at both sites; Middle and Fringe site

In this study, NH$_4^+$ content generally decreased with time during the rice-cropping season except for the treatments that received urea at week 7 after the transplantation of the rice plants. The decrease in NH$_4^+$ with time resemble the finding by Carmona et al. (2012) who noted a decline of the same over a period of 91 days. The decline could be partly attributed to rice crop uptake (Ghosh and Bhat, 1998) and possibly leaching (Kimetu et
Meng et al. (2014) noted considerable NH$_4^+$ losses through leaching beyond the 50cm soil depth in both conventional and organic based rice production systems.

The observed NH$_4^+$ decline from the first week onwards at both sites coincided with existence of reducing soil conditions as evidenced by the low (< + 300 mV) redox values. Under such a situation, NH$_4^+$ does accumulate in the soil environment (Kimetu et al., 2006; Reddy and Delaune, 2008) unless other factors which favors its removal such as NH$_4^+$ volatilization due to high pH (Loomis and Connor, 1992; Singh and Vaje, 1998) or leached or displacement by runoff (Garc’ia-Garc’ia et al., 2006; Eder et al., 2015) have an influence. However, the soils under the study had pH values (5.8 and 6.1 for the Middle and Fringe sites, respectively). This is outside such a range. The most probable cause for the observed low NH$_4^+$ values is low N mineralization rate and or leaching. It is well documented that low redox potential lowers mineralization by the fact that only anaerobic or facultative anaerobers can accomplish the respiration process (Inglett et al., 2005; Pezeshki and Delaune, 2012). This category of microorganisms has both a low carbon assimilation capacity and energy requirements (Pezeshki and Delaune, 2012). Redox values below + 300 mV is considered to be the limit for aerobic respiration (Mitsch, and Gosselink, 2007; Rostaminia et al., 2011; Pezeshki and Delaune, 2012). Consequently, the N mineralization rate is also low (Yan and Jing, 2003; Kimetu et al., 2006). This could explain the rather low values of NH$_4^+$ recorded in the first 4 - 6 weeks of the season at the Middle and Fringe site, respectively.

The sudden increase in NH$_4^+$ in TR4 and TR5 at week 8 was associated with ammonium fertilizer application that took place at week 7. In practice, urea will hydrolyze to release NH$_4^+$ in a period of 5-7 days (Dharmakeerthi and Thenabadu, 1996; Pattnaik et al., 1999). This could therefore explain the higher values of NH$_4^+$ recorder in TR4 and TR5 during
week 8. Meng et al. (2014) observed fluxes of NH$_4^+$ as detected in leached N upon application of DAP (di-ammonium phosphate) and urea topdressing.

However, the content of NH$_4^+$ in the treatment with 120kg/ha of added urea (TR5) was not proportionately higher than that of the treatment with 60kg/ha of urea (TR4). The former was 3-fold higher indicating that there could be other factors which determined the NH$_4^+$ content during the period under discussion. However, these are not addressed in this study. In view of the fact that the redox potential in the soil (root zone) for a greater part of the rice cropping season was above the +300 mV at the Middle site, these conditions were favorable for oxidation of NH$_4^+$ into NO$_3^-$ (Pezeshki and Delaune, 2012). This could not only explain the generally low levels of NH$_4^+$ observed in this study but also the sudden decline in NH$_4^+$ in TR4 and 5 immediately after week 8.

Although release of NH$_4^+$ in paddies during the late cropping season of paddy has been reported before by Meng et al. (2014), the rather significant accumulation of NH$_4^+$ in TR1 ought to be further investigated to find out the causative factors.

The input of organic 60 kg of inorganic N upon lablab green manure incorporation (TR6) in the soil appeared not to influence the NH$_4^+$ content. These results are contrary to many previous studies (Yadvinder-Singh et al., 1991; George et al., 1992; Becker et al., 1995). Lablab decomposes to release NH$_4^+$ about 4 to 6 weeks after it has been incorporated into the soil under aerobic conditions (Pereira et al., 2016). Under anaerobic conditions, the ammonification of lablab would take much longer time with lower NH$_4^+$ yield (Buress and De data, 1991; Becker et al., 1995). The lack of response in NH$_4^+$ could be related to the low redox potential that dominated during the early stage of the rice-cropping season as shown on Table 6. Under such a situation, the mineralization process becomes negative
(Casman et al., 1998; Toure et al., 2009). This could explain the poor response in NH$_4^+$ production throughout the rice-cropping season. One would have expected to see some differences between TR6 and the rest of the treatments notably those without any added N.

There was a considerable resemblance in the pattern of NH$_4^+$ variation at the Fringe site to that of the Middle site. This is exemplified by the general decrease in in the initial NH$_4^+$ content, the sudden rise in NH$_4^+$ content at week 8 for the treatments with added mineral N. These results can therefore be explained in a similar manner as those of the Middle site except for the significant increase in NH$_4^+$ content in TR5 and TR6 towards the late stage of the rice-cropping season (week 12-16) at the Fringe site. This difference cannot be explained with the available data; it needs further studies. This controversy need to be studied further.

The significantly high NH$_4^+$ values noted in the treatments with added urea can only be linked with N input. Previous studies have shown a higher ammonium production upon decomposition of crop residues from fields that have benefited from mineral N fertilizer (George et al., 1992; Palm et al., 1997; Villegas-Pangga et al., 2000; Javier and Tabien, 2005; Kimetu et al., 2006; Ngwene et al., 2009). The lack of difference in NH$_4^+$ in the treatment, which received labalab green manure, contradicts previous studies (Buresh and De data, 1991; Yadvinder-Singh et al., 1991; George, et al., 1992; Becker et al., 1995; Yadvinder-Singh et al., 2005). The decline in NH$_4^+$ content in during the first 6 to 8 weeks of the rice-cropping season could be due to the consumption of mineral N with crop growth (Cassman et al., 1998; Nascente et al., 2009).

5.2 Effects of Crop Management Interventions on the Variation of NO$_3^-$ Content

The effects of crop management interventions on NO$_3^-$ variation have been discussed in both site under two seasons; i.e. Pre-rice cropping season (dry-wet transition period) and the rice-cropping season.
5.2.1 NO$_3^-$ variability during the pre-rice cropping season at both sites; Middle and Fringe site

The variation of NO$_3^-$ content over the study period followed a similar pattern at both sites reflecting some similarity in the conditions that controlled the soil NO$_3^-$ status. The NO$_3^-$ content declined sharply within 1 and 2 weeks at the Fringe and Middle sites, respectively to attain 0 g/kg soil. Surprisingly, this happened under categorically different moisture conditions. At the Middle site, soil moisture was rather stressed while at the Fringe site it was rather near saturation (Linn and Doran, 1984; George et al., 1993). This trend does not reflect the relatively high ammonium produced during the 2-4 and 1-3 week periods at the Middle and Fringe site, respectively. There is a clear disparity between the two. It is assumed that the conditions, particularly at the Middle site were aerobic, as reflected by the redox potential values for the period under consideration, one would have expected a spontaneous oxidation of the existing ammonium and hence its reflection on the NO$_3^-$ content. The same was expected for both the soil moisture and redox potential in particular at the Middle site. Cannot account for the difference between these two parameters. These results are contrary to the finding of Zaman et al. (1999) who noted highest nitrification rates in NH$_4$Cl-treated soil compared with other treatments with no added ammonium.

The extremely low or absence of NO$_3^-$ between week 2 and 6 at the Fringe site and 2 to 5 at the Middle site cannot be well explained with available data. During this period, there was supply of ammonium in particular at the Middle site (Fig.3) and the moisture and redox potential were in a status that would favour nitrification. It would be beneficial to do a similar study in which the fate of N is fully characterized. The increases in NO$_3^-$ content from week 4 (Middle) and week 6 (Fringe site) corresponded with nitrification process (Cassman et al., 1998; Kimetu et al., 2006). Differences among treatments were
only noted in TR1 and TR3 at week 10 in which the NO$_3^-$ content was higher than in the rest of the treatments.

5.2.2 NO$_3^-$ variability during the paddy growing period at both sites; Middle and Fringe site

At both sites, NO$_3^-$ tended to accumulate during the dry season. This is reflected by the rise in NO$_3^-$ content towards the end of the pre-rice cropping period and the corresponding relatively high values of the same at the start (week 0) of the rice-cropping season. This could probably be attributed to NH$_4^+$ conversion to NO$_3^-$ under aerobic condition (Cassman et al., 1998; Wang et al., 2001; Smith, 2010). Alternate wet and dry seasons have been shown to lead to formation of ammonium and its subsequent oxidation to NO$_3^-$ (George et al., 1993; Kleinhenz et al., 1997; Pande, 2005).

Characteristically, the accumulated NO$_3^-$ declined rapidly to attain 0 or close to 0 g/kg soil within 2 weeks, irrespective of the treatment and site. This drop in NO$_3^-$ level could be attributed to denitrification caused by the low soil redox potential (Table 6). The redox potential changed from week 0 to week 2 as follows: 237.0 to 204.8 mV at the Middle site and from 195.3 to 209.2 mV at the Fringe site. These redox values fall under the range in which O$_2$ is limited and therefore favors denitrification (Patrick, 1960; Turner and Patrick, 1968; Reddy and Patrick, 1975; Buresh and Patrick, 1981).

The subsequent low nitrate content at the Middle site from week 2 and to week 10 in the treatment that were not supplied with mineral N (TR2, TR3 and TR6) would have negative consequence to the crop. At this stage, particularly the booting stage, which corresponded with week 8 and10, the demand for N is usually high (Cassman et al., 1998; Kimetu et al., 2006). The treatments which received 60 and 120 kg N/ha (TR4 and TR5)
were the only ones in which there was significantly higher nitrate content at booting and grain filling stage. During the late cropping stage (week 12-16), all treatments with rice crop (TR2, TR3, TR4, TR5 and TR6) had virtually no NO$_3^-$ content. This could be partly explained by the low NH$_4^+$ content and possible crop uptake of any available NH$_4^+$ during the booting stage (George et al., 1993; Olk et al., 1996; Nascente et al., 2009).

At the Fringe site, there was virtually no NO$_3^-$ in all treatments at week 2. The same happened to all treatments with no added mineral N (TR1, TR2, TR3 and TR6) during the tillering and booting stage (week 2 to 8). As it was with the Middle site, a general decline in NO$_3^-$ content to virtually 0 g/kg soil occurred for the treatments with rice crop (TR2, TR3, TR4, TR5) during the late cropping stage (week 12 to 16). This largely corresponded with the low NH$_4^+$ content in the soil particularly in the treatments that did not receive mineral N. This can be explained by the generally low content of NH$_4^+$ at the site that could have been converted to NO$_3^-$ (Pande, 2005; Reddy and Delaune, 2008).

5.3 Contribution of Hydrological Conditions on the NH$_4^+$ and NO$_3^-$ Variation

The choice of the two sites was based on assumption that the three major floodplain hydrological zones; Valley Central, Valley Middle and Valley Fringe differ in their hydrology (Keeney and Sahrawat, 1986; Inglett et al., 2005; Reddy and DeLaune, 2008) as this has a profound effect on N status. The Valley Central zone was inundated throughout the duration of experimentation period, hence abandoned. The remaining two sites showed a lot of resemblance in their hydrological properties as evidenced by their redox potential.

During the rice-cropping period, both sites showed reducing conditions for 3 weeks at the Middle site and two weeks at the Fringe site followed by some fluctuations between
moderately reduced and reduced soil conditions between week 6 and week 10 as shown in Fig. 11 and 12. The soils of both sites returned to aerobic conditions between week 12 and week 16. This similar trend in redox potential is an important factor that explains the similarity that occurred in terms of root zone \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) content between the two sites. Varied results from N dynamics studies in different time show the effect that differences in the hydrological condition can have on wetland N dynamics. \(\text{NO}_3^- \) removal have been measured in wetlands agricultural lands that showed high rate in \(\text{NO}_3^- \) dynamics under different hydrological zones in USA, Scotsman Valley in New Zealand and Rabis Bæk in Denmark (Cooper, 1990; Brøusch and Nilsson, 1993). Devito et al. (1989) in a study of five wetlands on the Canadian wetland found that there was no significant net retention of N within the wetlands, but there was transformation of inorganic N to organic N that influence \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) dynamics under different hydrological condition.

Also, Cai et al. (2002) reported that there was losses of \(\text{NH}_4^+ \) contents under different hydrological condition in lowland wetland soil. That notwithstanding, Asante (2015) reported that there were no significance relationship between \(\text{NO}_3^- \) status under different hydrological zone in wetland soil in Ghana inland valley. This is similar with the results of Yameogo (2017) who reported that \(\text{NO}_3^- \) level was not significantly different among the treatments under different hydrological condition in an inland valley of the West African savanna zone.

These results therefore indicate that the \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) status at both the Valley Middle zone and the Valley Fringe zone did not differ significantly. It is implied therefore that the presumed difference in both \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) status because of differences in hydrology between the two sites could not be verified. Accordingly, therefore the null hypothesis is therefore supported.
CHAPTER SIX

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The pre-rice cropping season was marked with 3 phases of variation in NH$_4^+$ content. The 1st phase of increase in NH$_4^+$ content during the first to six weeks depending on the treatment in question followed with a period of NH$_4^+$ decline during the 5th to 9th week, and an increase in NH$_4^+$ level from the 10th to the 13th season.

Peak NH$_4^+$ in the 1st phase differed among treatments. Peak NH$_4^+$ production was significantly higher (P = 0.05) in treatments with external N input (TR4, TR5, and TR6) in both Middle Fringe sites. Significant differences (P=0.05) in NH$_4^+$ also occurred at the Middle site during the early period of decline (Week 6) in N where the trend was as follows: TR6>TR5=TR4>TR3=TR2=TR1.

The initial NH$_4^+$ content at the start of the rice-cropping season varied widely among treatments with higher values being mostly encountered in the treatments with external N input during the 2014/15 season. These were TR4 and TR5 at the Middle site and TR4, TR5, and TR6 the Fringe site.

NH$_4^+$ tended to decrease continuously from week 1 to attain lowest values at the start of the end of the cropping season (week 16) for almost treatments with no external mineral N at the Middle site. At the Fringe site, the decline in NH$_4^+$ followed a similar trend between week 4 and 8 then it either stabilized or increased slightly thereafter depending on the treatment under consideration.
The initial (starting) NO$_3^-$ content during the pre-rice cropping season, ranged from 0.001706 (TR2) to 0.002951 (TR6) g/kg soil at the Middle site and from 0.0 to 0.0003604 g/kg soil. NO$_3^-$ content decreased sharply (within 1-2 weeks) to attain the least values within 1-2 weeks at both sites.

NO$_3^-$ content was nil or extremely low in all treatments between week 2 and week 3 (Middle) and between week 2 and Week 6 (Fringe).

End of the pre-season was characterized by increase in NO$_3^-$ content (week 5-10 for the Middle site and week 7-10 for the Fringe site).

Addition of urea at week 6 led to a sharp and short-lived increase of NO$_3^-$ at the beginning of the booting stage in the both sites.

6.2 Recommendations

Studies that concern N dynamics can be best understood if there is adequate characterization, in particular constant monitoring of the influxes, removal of N, transformations as well as changes in status in correspondence with changes in soil redox potential. It is recommended that future studies on mineral N status in wetland should focus on the N dynamics so as to understand how best to manage N resources for both economical and for environmental purposes.

Due to heterogeneity in field moisture conditions, a study like this one should be carried under controlled conditions in order to be able to correctly interpret the results.
REFERENCES

cropping system in the tropics and improvements of nitrogen use efficiency.
Dissertation for award of PhD at Kyoto University, Kyoto, Japan. 194pp.

Pal, D. and Broadbent, F. E. (1975). Influence of moisture on rice straw decomposition in

matter in the tropics: translating theory into practice. *Nutrient Cycle Agro
Ecosystem* 61: 63 - 75.

inorganic nutrient sources for soil fertility maintenance and replenishment. In:
*Replenishing Soil Fertility in Africa. (Edited by Buresh, R. J. and Sanchez, P.

Biology and Fertility: A Handbook of Methods. (Edited by Anderson, J. M. and

on 21/8/2016.

Journal of Sustainable Agriculture 13: 59 - 77.

Nitrogen dynamics and crop growth on an Alfsols and a Vertisol under rain-fed lowland rice-based cropping system.

Dissertation for award of MSc degree at Indiana University, India. 94pp.

Journal of Environmental Quality 22: 392 - 402.

Dissertation for award of PhD at Kyoto University, Kyoto, Japan. 189pp.

